Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;18(4):897-906.
doi: 10.3233/JAD-2009-1197.

Human truncated tau is using a different mechanism from amyloid-beta to damage the blood-brain barrier

Affiliations

Human truncated tau is using a different mechanism from amyloid-beta to damage the blood-brain barrier

Andrej Kovac et al. J Alzheimers Dis. 2009.

Abstract

Recent findings showed that vascular dysfunction is an integral part of Alzheimer's disease pathology. Increased microvascular permeability is mainly associated with cerebrovascular amyloid-beta deposits. In contrast, little is known about the relationship between functional impairment of the blood-brain barrier and misfolded tau. In the present study, we examined whether human truncated tau is able to impair the blood-brain barrier in an in vitro model. We have found that truncated tau induced a very strong polarity-dependent effect in the rat blood-brain barrier model. When the tau was added to the upper compartment of the model containing endothelial cells (apical treatment), no effect was observed. However, the application of tau to the lower compartment (basolateral treatment), consisting of astrocyte-microglia culture, triggered significant decrease of transendothelial electrical resistance and increase of endothelial permeability for mannitol. Further, we found that truncated tau showed cytotoxic effects on astrocyte-microglia culture manifested by increased extracellular adenylate kinase levels. Molecular analysis of underlying mechanisms of tau-induced blood-brain barrier damage revealed the contribution of pro-inflammatory cytokine tumor necrosis factor-alpha and chemokine MCP-1 released from activated microglial cells. This study for the first time uncovers a novel toxic gain of function of misfolded tau that could contribute to the cerebral microvascular damage in human tauopathies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources