Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan 15;75(2):462-9.

Metalloprotease activity of CD13/aminopeptidase N on the surface of human myeloid cells

Affiliations
  • PMID: 1967220
Free article

Metalloprotease activity of CD13/aminopeptidase N on the surface of human myeloid cells

R A Ashmun et al. Blood. .
Free article

Abstract

We previously found that the myeloid cell surface glycoprotein CD13 (gp150) is identical to aminopeptidase N (EC 3.4.11.2), a widely distributed membrane-bound, zinc-dependent metalloprotease with an extracellular enzymatic domain that cleaves N-terminal amino acid residues from oligopeptides (J Clin Invest 83:1299, 1989). As a first step toward defining the function of this molecule on myeloid cells, we assessed cell surface-associated N-terminal peptidase activity by sensitive spectrophotometric measurements of the cleavage of p-nitroanilide amino acid derivatives. Aminopeptidase activity detected on the surface of normal and malignant hematopoietic cells coincided with the level of cell surface CD13 expression as measured by flow cytometry. The enzyme was specifically inhibited by the zinc-binding metalloprotease inhibitors, bestatin, 1,10-phenanthroline, or 2.2'-dipyridyl, but was not affected by several inhibitors of other classes of proteases. Aminopeptidase activity was demonstrated for CD13 molecules specifically immunoprecipitated from the surface of CD13-positive cells and was blocked by the metalloprotease inhibitor 1,10-phenanthroline. Moreover, cell surface aminopeptidase activity was partially inhibited when viable cells were incubated with two of a panel of 11 monoclonal antibodies (MoAbs) known to be specific for extracellular epitopes of human CD13. This inhibition was apparent in the absence of detectable downmodulation of CD13 molecules from the cell surface, suggesting that these MoAbs either physically interfere with substrate binding or alter the zinc-coordinating properties of aminopeptidase N molecules. Aminopeptidase N could play an important role in modulating signals generated by peptides at the surface of myeloid cells, either by removing key N-terminal residues from active peptides or by converting inactive peptides to active forms. The inhibitory antibodies used in this study should prove useful in delineating the physiologic roles of CD13/aminopeptidase N on normal and malignant myeloid cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources