Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;111(1):160-70.
doi: 10.1111/j.1471-4159.2009.06309.x. Epub 2009 Jul 27.

Regulation of synaptic vesicle accumulation and axon terminal remodeling during synapse formation by distinct Ca signaling

Affiliations
Free article

Regulation of synaptic vesicle accumulation and axon terminal remodeling during synapse formation by distinct Ca signaling

Tomoyuki Yoshida et al. J Neurochem. 2009 Oct.
Free article

Abstract

The synaptic vesicle accumulation and subsequent morphological remodeling of axon terminals are characteristic features of presynaptic differentiation of zebrafish olfactory sensory neurons. The synaptic vesicle accumulation and axon terminal remodeling are regulated by protein kinase A and calcineurin signaling, respectively. To investigate upstream signals of presynaptic differentiation, we focused on Ca(2+) signaling as Ca(2+)/calmodulin is required for the activation of both calcineurin and some adenylyl cyclases. We here showed that application of Ca(2+)/calmodulin inhibitor or olfactory sensory neuron-specific expression of calmodulin inhibitory peptide suppressed both synaptic vesicle accumulation and axon terminal remodeling. Thus, the trigger of presynaptic differentiation could be Ca(2+) release from intracellular stores or Ca(2+) influx. Application of a phospholipase C inhibitor or olfactory sensory neuron-specific expression of inositol 1,4,5-trisphosphate (IP(3)) 5-phosphatase suppressed synaptic vesicle accumulation, but not morphological remodeling. In contrast, application of a voltage-gated Ca(2+) channel blocker or expression of Kir2.1 inward rectifying potassium channel prevented the morphological remodeling. We also provided evidence that IP(3) signaling acted upstream of protein kinase A signaling. Our results suggest that IP(3)-mediated Ca(2+)/calmodulin signaling stimulates synaptic vesicle accumulation and subsequent neuronal activity-dependent Ca(2+)/calmodulin signaling induces the morphological remodeling of axon terminals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources