Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;73(Pt 4):391-403.
doi: 10.1111/j.1469-1809.2009.00524.x. Epub 2009 May 21.

Parkinson's disease and low frequency alleles found together throughout LRRK2

Affiliations

Parkinson's disease and low frequency alleles found together throughout LRRK2

Coro Paisán-Ruiz et al. Ann Hum Genet. 2009 Jul.

Abstract

Mutations within LRRK2, most notably p.G2019S, cause Parkinson's disease (PD) in rare monogenic families, and sporadic occurrences in diverse populations. We investigated variation throughout LRRK2 (84 SNPs; genotype or diplotype found for 49 LD blocks) for 275 cases (European ancestry, onset at age 60 or older) and 275 neurologically healthy control subjects (NINDS Neurogenetics Repository). Three grade-of-membership groups, i.e. genetic risk sets, were identified that exactly matched many subjects (cases: 46, 4, 137; controls: 0, 178, 0), and distinguished 94% of the subjects (i.e. >50% likeness to one set). Set I, affected, carried certain low frequency alleles located in multiple functional domains. Set II was unaffected. Set III, also affected, resembled set II except for slightly elevated frequencies of minor alleles not defining set I. We conclude that certain low frequency alleles distributed throughout LRRK2 are a genetic background to a third of cases, defining a distinct subset.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Minor allele frequencies
The frequency of minor alleles is shown for PD cases like (> 50% match, i.e. a membership score of 0.50 or higher) pattern I (n=91), control subjects like pattern II (n=250), and PD cases like pattern III (n=178).

Similar articles

Cited by

References

    1. Kuopio AM, Marttila RJ, Helenius H, Rinne UK. Changing epidemiology of Parkinson’s disease in southwestern Finland. Neurology. 1999;52:302–308. - PubMed
    1. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW, International LRRK2 Consortium Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 2008 Jul;7(7):583–90. Epub 2008 Jun 6. - PMC - PubMed
    1. Marín I, van Egmond WN, van Haastert PJ. The Roco protein family: a functional perspective. FASEB J. 2008 Sep;22(9):3103–10. Epub 2008 Jun 3. - PubMed
    1. Fung HC, Scholz S, Matarin M, Simon-Sanchez J, Hernandez D, Britton A, Gibbs JR, Langefeld C, Stiegert ML, Schymick J, Okun MS, Mandel RJ, Fernandez HH, Foote KD, Rodriguez RL, Peckham E, De Vrieze FW, Gwinn-Hardy K, Hardy JA, Singleton A. Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol. 2006b;5:911–916. - PubMed
    1. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87. - PMC - PubMed

Publication types

Substances