Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
- PMID: 19481487
- DOI: 10.1016/j.molcel.2009.04.030
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
Abstract
The proteasome forms the core of the protein quality control system in archaea and eukaryotes and also occurs in one bacterial lineage, the Actinobacteria. Access to its proteolytic compartment is controlled by AAA ATPases, whose N-terminal domains (N domains) are thought to mediate substrate recognition. The N domains of an archaeal proteasomal ATPase, Archaeoglobus fulgidus PAN, and of its actinobacterial homolog, Rhodococcus erythropolis ARC, form hexameric rings, whose subunits consist of an N-terminal coiled coil and a C-terminal OB domain. In ARC-N, the OB domains are duplicated and form separate rings. PAN-N and ARC-N can act as chaperones, preventing the aggregation of heterologous proteins in vitro, and this activity is preserved in various chimeras, even when these include coiled coils and OB domains from unrelated proteins. The structures suggest a molecular mechanism for substrate processing based on concerted radial motions of the coiled coils relative to the OB rings.
Comment in
-
The proteasome's crown for destruction.Mol Cell. 2009 Jun 12;34(5):519-20. doi: 10.1016/j.molcel.2009.05.021. Mol Cell. 2009. PMID: 19524532
Similar articles
-
The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis.J Struct Biol. 2004 Apr-May;146(1-2):155-65. doi: 10.1016/j.jsb.2003.10.020. J Struct Biol. 2004. PMID: 15037247
-
Characterization of AMA, a new AAA protein from Archaeoglobus and methanogenic archaea.J Struct Biol. 2006 Oct;156(1):130-8. doi: 10.1016/j.jsb.2006.03.010. Epub 2006 Apr 18. J Struct Biol. 2006. PMID: 16730457
-
Characterization of a new AAA+ protein from archaea.J Struct Biol. 2006 Oct;156(1):120-9. doi: 10.1016/j.jsb.2006.01.010. Epub 2006 Mar 9. J Struct Biol. 2006. PMID: 16584891
-
Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes.Curr Opin Struct Biol. 2009 Apr;19(2):209-17. doi: 10.1016/j.sbi.2009.02.006. Epub 2009 Apr 10. Curr Opin Struct Biol. 2009. PMID: 19362814 Review.
-
Proteasomes from structure to function: perspectives from Archaea.Curr Top Dev Biol. 2006;75:125-69. doi: 10.1016/S0070-2153(06)75005-0. Curr Top Dev Biol. 2006. PMID: 16984812 Review.
Cited by
-
Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme.Emerg Top Life Sci. 2018 Dec;2(4):561-580. doi: 10.1042/etls20180025. Epub 2018 Nov 14. Emerg Top Life Sci. 2018. PMID: 32953999 Free PMC article.
-
Assembly, structure, and function of the 26S proteasome.Trends Cell Biol. 2010 Jul;20(7):391-401. doi: 10.1016/j.tcb.2010.03.007. Epub 2010 Apr 26. Trends Cell Biol. 2010. PMID: 20427185 Free PMC article. Review.
-
Toward an integrated structural model of the 26S proteasome.Mol Cell Proteomics. 2010 Aug;9(8):1666-77. doi: 10.1074/mcp.R000002-MCP201. Epub 2010 May 13. Mol Cell Proteomics. 2010. PMID: 20467039 Free PMC article.
-
Disulfide engineering to map subunit interactions in the proteasome and other macromolecular complexes.Methods Mol Biol. 2012;832:349-62. doi: 10.1007/978-1-61779-474-2_24. Methods Mol Biol. 2012. PMID: 22350897 Free PMC article.
-
Conserved proline residues in the coiled coil-OB domain linkers of Rpt proteins facilitate eukaryotic proteasome base assembly.J Biol Chem. 2021 Jan-Jun;296:100660. doi: 10.1016/j.jbc.2021.100660. Epub 2021 Apr 14. J Biol Chem. 2021. PMID: 33862083 Free PMC article.
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Miscellaneous