Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009;12(2):125-37.
doi: 10.1007/s10456-009-9147-3. Epub 2009 May 16.

The role of the Angiopoietins in vascular morphogenesis

Affiliations
Review

The role of the Angiopoietins in vascular morphogenesis

Markus Thomas et al. Angiogenesis. 2009.

Abstract

The Angiopoietin/Tie system acts as a vascular specific ligand/receptor system to control endothelial cell survival and vascular maturation. The Angiopoietin family includes four ligands (Angiopoietin-1, Angiopoietin-2 and Angiopoietin-3/4) and two corresponding tyrosine kinase receptors (Tie1 and Tie2). Ang-1 and Ang-2 are specific ligands of Tie2 binding the receptor with similar affinity. Tie2 activation promotes vessel assembly and maturation by mediating survival signals for endothelial cells and regulating the recruitment of mural cells. Ang-1 acts in a paracrine agonistic manner inducing Tie2 phosphorylation and subsequent vessel stabilization. In contrast, Ang-2 is produced by endothelial cells and acts as an autocrine antagonist of Ang-1-mediated Tie2 activation. Ang-2 thereby primes the vascular endothelium to exogenous cytokines and induces vascular destabilization at higher concentrations. Ang-2 is strongly expressed in the vasculature of many tumors and it has been suggested that Ang-2 may act synergistically with other cytokines such as vascular endothelial growth factor to promote tumor-associated angiogenesis and tumor progression. The better mechanistic understanding of the Ang/Tie system is gradually paving the way toward the rationale exploitation of this vascular signaling system as a therapeutic target for neoplastic and non-neoplastic diseases.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources