Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jul;30(2):239-58.
doi: 10.1016/j.yfrne.2009.04.015. Epub 2009 May 7.

Protective actions of sex steroid hormones in Alzheimer's disease

Affiliations
Review

Protective actions of sex steroid hormones in Alzheimer's disease

Christian J Pike et al. Front Neuroendocrinol. 2009 Jul.

Abstract

Risk for Alzheimer's disease (AD) is associated with age-related loss of sex steroid hormones in both women and men. In post-menopausal women, the precipitous depletion of estrogens and progestogens is hypothesized to increase susceptibility to AD pathogenesis, a concept largely supported by epidemiological evidence but refuted by some clinical findings. Experimental evidence suggests that estrogens have numerous neuroprotective actions relevant to prevention of AD, in particular promotion of neuron viability and reduction of beta-amyloid accumulation, a critical factor in the initiation and progression of AD. Recent findings suggest neural responsiveness to estrogen can diminish with age, reducing neuroprotective actions of estrogen and, consequently, potentially limiting the utility of hormone therapies in aged women. In addition, estrogen neuroprotective actions are also modulated by progestogens. Specifically, continuous progestogen exposure is associated with inhibition of estrogen actions whereas cyclic delivery of progestogens may enhance neural benefits of estrogen. In recent years, emerging literature has begun to elucidate a parallel relationship of sex steroid hormones and AD risk in men. Normal age-related testosterone loss in men is associated with increased risk to several diseases including AD. Like estrogen, testosterone has been established as an endogenous neuroprotective factor that not only increases neuronal resilience against AD-related insults, but also reduces beta-amyloid accumulation. Androgen neuroprotective effects are mediated both directly by activation of androgen pathways and indirectly by aromatization to estradiol and initiation of protective estrogen signaling mechanisms. The successful use of hormone therapies in aging men and women to delay, prevent, and or treat AD will require additional research to optimize key parameters of hormone therapy and may benefit from the continuing development of selective estrogen and androgen receptor modulators.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Estrogens activate neuroprotective pathways that may attenuate Alzheimer’s disease. Estrogens including 17β-estradiol (E2) reduce neuronal apoptosis by (i) non-genomic signaling cascades, including activation of PI3K, protein kinase C (PKC) and Src/ERK pathways, and (ii) genomic pathways utilizing CREB response elements (CRE) and estrogen response elements (ERE) on members of the Bcl-2 family of genes including Bcl-2, Bcl-x, Bcl-w, and Bim. Similarly, estrogens decrease levels of the AD-related protein Aβ by (i) nongenomic signaling that promotes non-amyloidogenic processing of the Aβ precursor protein (APP), and perhaps (ii) classic genomic mechanisms that may involve ERE, CRE, and or other steroid response elements (SRE) on the Aβ-catabolizing enzymes neprilysin (NEP) and insulin degrading enzyme (IDE).
Figure 2
Figure 2
Androgens activate neuroprotective pathways that may attenuate Alzheimer’s disease. First, testosterone (T) is aromatized in brain to 17β-estradiol (E2), which activates estrogen-mediated neuroprotective pathways (summarized in Figure 1). Second, testosterone and its metabolite dihydrotestosterone (DHT) activate AR-dependent protective pathways. T and DHT reduce neuronal apoptosis by a non-genomic signaling cascade involving activation of MAPK/ERK, followed by activating phosphorylation (p) of Rsk, and inactivating phosphorylation of the pro-apoptotic protein Bad. Also, androgens decrease levels of the AD-related protein Aβ by a classic genomic mechanism involving activated AR interaction with androgen response elements (ARE) on the neprilysin gene, which results in increased expression of this Aβ-catabolizing enzyme.

Similar articles

Cited by

References

    1. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. The Writing Group for the PEPI Trial. Jama. 1995;273:199–208. - PubMed
    1. Aenlle KK, Kumar A, Cui L, Jackson TC, Foster TC. Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiol Aging. 2007 - PMC - PubMed
    1. Ahlbom E, Prins GS, Ceccatelli S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Research. 2001;892:255–262. - PubMed
    1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL. Inflammation and Alzheimer's disease. Neurobiology of Aging. 2000;21:383–421. - PMC - PubMed
    1. Alexander GM, Swerdloff RS, Wang C, Davidson T, McDonald V, Steiner B, Hines M. Androgen-behavior correlations in hypogonadal men and eugonadal men. II.Cognitive abilities. Horm Behav. 1998;33:85–94. - PubMed

Publication types

MeSH terms