Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May 1;81(9):3485-99.
doi: 10.1021/ac802770r.

Analysis of oligosaccharides derived from heparin by ion-pair reversed-phase chromatography/mass spectrometry

Affiliations

Analysis of oligosaccharides derived from heparin by ion-pair reversed-phase chromatography/mass spectrometry

Catalin E Doneanu et al. Anal Chem. .

Abstract

Current chromatographic and mass spectrometric techniques have limitations for analyzing heparin and heparin oligomers due to their high polarity, structural diversity, and sulfate lability. A rapid method for the analysis of heparin oligosaccharides was developed using ion-pair reversed-phase ultraperformance liquid chromatography coupled with electrospray quadruple time-of-flight mass spectrometry (IPRP-UPLC ESI Q-TOF MS). The method utilizes an optimized buffer system containing a linear pentylamine and a unique additive, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), to achieve highly efficient separation together with enhanced mass response of heparin oligosaccharides. Analyses of a heparin oligosaccharide test mixture, dp6 through dp22, reveal that the chromatographic conditions enable baseline resolution of isomeric heparin oligosaccharides (dp6) and produce intact molecular ions with no sulfate losses during mass spectrometric analysis. In addition, the described conditions are amenable to the detection of heparin oligosaccharides in positive ion mode, yield stronger positive ion signals for corresponding oligosaccharides compared to the negative ion mode, and allow identification of structural isomers by an MS/MS approach. Because sensitive detection of oligosaccharides is also achieved with ultraviolet (UV) detection, the method utilizes a dual detection scheme (UV and MS in series) along with IPRP UPLC to simultaneously obtain quantification (UV) and characterization (MS) data for heparin oligosaccharides. The broad potential of this new method is further demonstrated for the analysis of a low-molecular-weight heparin (LMWH) preparation from porcine heparin. This approach will be of particular utility for profiling the molecular entities of heparin materials, as well as for structural variability comparison for samples from various sources.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources