Chemical dissection of an essential redox switch in yeast
- PMID: 19230722
- DOI: 10.1016/j.chembiol.2009.01.003
Chemical dissection of an essential redox switch in yeast
Abstract
Saccharomyces cerevisiae responds to elevated levels of hydrogen peroxide in its environment via a redox relay system comprising the thiol peroxidase Gpx3 and transcription factor Yap1. In this signaling pathway, a central unresolved question is whether cysteine sulfenic acid modification of Gpx3 is required for Yap1 activation in cells. Here we report that cell-permeable chemical probes, which are selective for sulfenic acid, inhibit peroxide-dependent nuclear accumulation of Yap1, trap the Gpx3 sulfenic acid intermediate, and block formation of the Yap1-Gpx3 intermolecular disulfide directly in cells. In addition, we present electrostatic calculations that show cysteine oxidation is accompanied by significant changes in charge distribution, which might facilitate essential conformational rearrangements in Gpx3 during catalysis and intermolecular disulfide formation with Yap1.
Similar articles
-
Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal.Mol Cell. 2007 Aug 17;27(4):675-88. doi: 10.1016/j.molcel.2007.06.035. Mol Cell. 2007. PMID: 17707237
-
Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast.Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):327-34. doi: 10.1089/ars.2005.7.327. Antioxid Redox Signal. 2005. PMID: 15706081
-
A genetically encoded probe for the identification of proteins that form sulfenic acid in response to H2O2 in Saccharomyces cerevisiae.J Proteome Res. 2011 Jun 3;10(6):2715-24. doi: 10.1021/pr1009542. Epub 2011 May 13. J Proteome Res. 2011. PMID: 21476607
-
Formation and reactions of sulfenic acid in human serum albumin.Methods Enzymol. 2010;473:117-36. doi: 10.1016/S0076-6879(10)73005-6. Methods Enzymol. 2010. PMID: 20513474 Review.
-
How to flip the (redox) switch.Cell. 2002 Nov 27;111(5):607-10. doi: 10.1016/s0092-8674(02)01165-0. Cell. 2002. PMID: 12464172 Review.
Cited by
-
Identifying Redox-Sensitive Cysteine Residues in Mitochondria.Antioxidants (Basel). 2023 Apr 25;12(5):992. doi: 10.3390/antiox12050992. Antioxidants (Basel). 2023. PMID: 37237858 Free PMC article.
-
RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid.J Biol Chem. 2013 Feb 15;288(7):4755-62. doi: 10.1074/jbc.M112.413492. Epub 2013 Jan 10. J Biol Chem. 2013. PMID: 23306201 Free PMC article.
-
Orchestrating redox signaling networks through regulatory cysteine switches.ACS Chem Biol. 2010 Jan 15;5(1):47-62. doi: 10.1021/cb900258z. ACS Chem Biol. 2010. PMID: 19957967 Free PMC article. Review.
-
Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast.Redox Biol. 2014 Jan 10;2:308-13. doi: 10.1016/j.redox.2013.12.019. eCollection 2014. Redox Biol. 2014. PMID: 24563848 Free PMC article.
-
Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification.Arch Biochem Biophys. 2017 Mar 1;617:26-37. doi: 10.1016/j.abb.2016.09.013. Epub 2016 Sep 28. Arch Biochem Biophys. 2017. PMID: 27693037 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous