Identification of an active LTR retrotransposon in rice
- PMID: 19187041
- DOI: 10.1111/j.1365-313X.2009.03813.x
Identification of an active LTR retrotransposon in rice
Erratum in
- Plant J. 2009 Dec;60(5):929
Abstract
Transposable elements are ubiquitous components of plant genomes. When active, these mobile elements can induce changes in the genome at both the structural and functional levels. Availability of the complete genome sequence for several model plant species provides the opportunity to study TEs in plants at an unprecedented scale. In the case of rice, annotation of the genomic sequence of the variety Nipponbare has revealed that TE-related sequences form more than 25% of its genome. However, most of the elements found are inactive, either because of structural alterations or because they are the target of various silencing pathways. In this paper, we propose a new post-genomic strategy aimed at identifying active TEs. Our approach relies on transcript profiling of TE-related sequences using a tiling microarray. We applied it to a particular class of TEs, the LTR retrotransposons. A transcript profiling assay of rice calli led to identification of a new transpositionally active family, named Lullaby. We provide a complete structural description of this element. We also show that it has recently been active in planta in rice, and discuss its phylogenetic relationships with Tos17, the only other active LTR retrotransposon described so far in the species.
Similar articles
-
Transpositional reactivation of two LTR retrotransposons in rice-Zizania recombinant inbred lines (RILs).Hereditas. 2010 Dec;147(6):264-77. doi: 10.1111/j.1601-5223.2010.02181.x. Epub 2010 Nov 18. Hereditas. 2010. PMID: 21166796
-
Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza.Plant J. 2008 Mar;53(6):950-9. doi: 10.1111/j.1365-313X.2007.03388.x. Epub 2007 Dec 6. Plant J. 2008. PMID: 18088314
-
RetrOryza: a database of the rice LTR-retrotransposons.Nucleic Acids Res. 2007 Jan;35(Database issue):D66-70. doi: 10.1093/nar/gkl780. Epub 2006 Oct 28. Nucleic Acids Res. 2007. PMID: 17071960 Free PMC article.
-
LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model.Cytogenet Genome Res. 2005;110(1-4):91-107. doi: 10.1159/000084941. Cytogenet Genome Res. 2005. PMID: 16093661 Review.
-
Parasitism and the retrotransposon life cycle in plants: a hitchhiker's guide to the genome.Heredity (Edinb). 2006 Dec;97(6):381-8. doi: 10.1038/sj.hdy.6800903. Epub 2006 Sep 20. Heredity (Edinb). 2006. PMID: 16985508 Review.
Cited by
-
Transposable elements: multifunctional players in the plant genome.Front Plant Sci. 2024 Jan 4;14:1330127. doi: 10.3389/fpls.2023.1330127. eCollection 2023. Front Plant Sci. 2024. PMID: 38239225 Free PMC article. Review.
-
Diverse and mobile: eccDNA-based identification of carrot low-copy-number LTR retrotransposons active in callus cultures.Plant J. 2022 Jun;110(6):1811-1828. doi: 10.1111/tpj.15773. Epub 2022 May 10. Plant J. 2022. PMID: 35426957 Free PMC article.
-
Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation.Front Plant Sci. 2014 Nov 6;5:607. doi: 10.3389/fpls.2014.00607. eCollection 2014. Front Plant Sci. 2014. PMID: 25414716 Free PMC article.
-
Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum.Genetica. 2017 Oct;145(4-5):417-430. doi: 10.1007/s10709-017-9977-7. Epub 2017 Aug 3. Genetica. 2017. PMID: 28776161
-
The differential transcription network between embryo and endosperm in the early developing maize seed.Plant Physiol. 2013 May;162(1):440-55. doi: 10.1104/pp.113.214874. Epub 2013 Mar 11. Plant Physiol. 2013. PMID: 23478895 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources