Testing significance relative to a fold-change threshold is a TREAT
- PMID: 19176553
- PMCID: PMC2654802
- DOI: 10.1093/bioinformatics/btp053
Testing significance relative to a fold-change threshold is a TREAT
Abstract
Motivation: Statistical methods are used to test for the differential expression of genes in microarray experiments. The most widely used methods successfully test whether the true differential expression is different from zero, but give no assurance that the differences found are large enough to be biologically meaningful.
Results: We present a method, t-tests relative to a threshold (TREAT), that allows researchers to test formally the hypothesis (with associated p-values) that the differential expression in a microarray experiment is greater than a given (biologically meaningful) threshold. We have evaluated the method using simulated data, a dataset from a quality control experiment for microarrays and data from a biological experiment investigating histone deacetylase inhibitors. When the magnitude of differential expression is taken into account, TREAT improves upon the false discovery rate of existing methods and identifies more biologically relevant genes.
Availability: R code implementing our methods is contributed to the software package limma available at http://www.bioconductor.org.
Figures
Similar articles
-
Degrees of differential gene expression: detecting biologically significant expression differences and estimating their magnitudes.Bioinformatics. 2004 Mar 22;20(5):682-8. doi: 10.1093/bioinformatics/btg468. Epub 2004 Jan 22. Bioinformatics. 2004. PMID: 15033875
-
A framework for oligonucleotide microarray preprocessing.Bioinformatics. 2010 Oct 1;26(19):2363-7. doi: 10.1093/bioinformatics/btq431. Epub 2010 Aug 5. Bioinformatics. 2010. PMID: 20688976 Free PMC article.
-
Normal uniform mixture differential gene expression detection for cDNA microarrays.BMC Bioinformatics. 2005 Jul 12;6:173. doi: 10.1186/1471-2105-6-173. BMC Bioinformatics. 2005. PMID: 16011807 Free PMC article.
-
RefPlus: an R package extending the RMA Algorithm.Bioinformatics. 2007 Sep 15;23(18):2493-4. doi: 10.1093/bioinformatics/btm357. Epub 2007 Jul 10. Bioinformatics. 2007. PMID: 17623700
-
Open source software for the analysis of microarray data.Biotechniques. 2003 Mar;Suppl:45-51. Biotechniques. 2003. PMID: 12664684 Review.
Cited by
-
Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses.Nucleic Acids Res. 2015 Sep 3;43(15):e97. doi: 10.1093/nar/gkv412. Epub 2015 Apr 29. Nucleic Acids Res. 2015. PMID: 25925576 Free PMC article.
-
A time-resolved meta-analysis of consensus gene expression profiles during human T-cell activation.Genome Biol. 2023 Dec 14;24(1):287. doi: 10.1186/s13059-023-03120-7. Genome Biol. 2023. PMID: 38098113 Free PMC article.
-
A method for stabilising the XX karyotype in female mESC cultures.Development. 2022 Nov 15;149(22):dev200845. doi: 10.1242/dev.200845. Epub 2022 Nov 28. Development. 2022. PMID: 36355065 Free PMC article.
-
Distinctive Roles for Type I and Type II Interferons and Interferon Regulatory Factors in the Host Cell Defense against Varicella-Zoster Virus.J Virol. 2018 Oct 12;92(21):e01151-18. doi: 10.1128/JVI.01151-18. Print 2018 Nov 1. J Virol. 2018. PMID: 30089701 Free PMC article.
-
Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell Lines.Sci Rep. 2018 Dec 10;8(1):17744. doi: 10.1038/s41598-018-35815-4. Sci Rep. 2018. PMID: 30531808 Free PMC article.
References
-
- Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics. 2001;17:509–519. - PubMed
-
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 1995;57:289–300.
-
- Cox DR, Hinkley DV. Theoretical Statistics. London: Chapman and Hall; 1974.
-
- Dennis G, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:R60. - PubMed
-
- DeRisi J, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 1996;14:457–460. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources