Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jun;87(8):1729-36.
doi: 10.1002/jnr.21998.

NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus

Affiliations
Review

NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus

Ghiam Yamin. J Neurosci Res. 2009 Jun.

Abstract

Alzheimer's disease (AD), the most common neurodegenerative disease in the elderly population, is characterized by the hippocampal deposition of fibrils formed by amyloid beta-protein (A beta), a 40- to 42-amino-acid peptide. The folding of A beta into neurotoxic oligomeric, protofibrillar, and fibrillar assemblies is believed to mediate the key pathologic event in AD. The hippocampus is especially susceptible in AD and early degenerative symptoms include significant deficits in the performance of hippocampal-dependent cognitive abilities such as spatial learning and memory. Transgenic mouse models of AD that express C-terminal segments or mutant variants of amyloid precursor protein, the protein from which A beta is derived, exhibit age-dependent spatial memory impairment and attenuated long-term potentiation (LTP) in the hippocampal CA1 and dentate gyrus (DG) regions. Recent experimental evidence suggests that A beta disturbs N-methyl-D-aspartic acid (NMDA) receptor-dependent LTP induction in the CA1 and DG both in vivo and in vitro. Furthermore, these studies suggest that A beta specifically interferes with several major signaling pathways downstream of the NMDA receptor, including the Ca(2+)-dependent protein phosphatase calcineurin, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), protein phosphatase 1, and cAMP response element-binding protein (CREB). The influence of A beta on each of these downstream effectors of NMDA is reviewed in this article. Additionally, other mechanisms of LTP modulation, such as A beta attenuation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents, are briefly discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources