Reverse engineering the genotype-phenotype map with natural genetic variation
- PMID: 19079051
- DOI: 10.1038/nature07633
Reverse engineering the genotype-phenotype map with natural genetic variation
Abstract
The genetic variation that occurs naturally in a population is a powerful resource for studying how genotype affects phenotype. Each allele is a perturbation of the biological system, and genetic crosses, through the processes of recombination and segregation, randomize the distribution of these alleles among the progeny of a cross. The randomized genetic perturbations affect traits directly and indirectly, and the similarities and differences between traits in their responses to common perturbations allow inferences about whether variation in a trait is a cause of a phenotype (such as disease) or whether the trait variation is, instead, an effect of that phenotype. It is then possible to use this information about causes and effects to build models of probabilistic 'causal networks'. These networks are beginning to define the outlines of the 'genotype-phenotype map'.
Similar articles
-
Genetic approaches to studying common diseases and complex traits.Pediatr Res. 2005 May;57(5 Pt 2):74R-77R. doi: 10.1203/01.PDR.0000159574.98964.87. Epub 2005 Apr 6. Pediatr Res. 2005. PMID: 15817501 Review.
-
An integrated approach to infer causal associations among gene expression, genotype variation, and disease.Genomics. 2009 Oct;94(4):269-77. doi: 10.1016/j.ygeno.2009.06.002. Epub 2009 Jun 18. Genomics. 2009. PMID: 19540336
-
Modelling genotype-phenotype relationships and human disease with genetic interaction networks.J Exp Biol. 2007 May;210(Pt 9):1559-66. doi: 10.1242/jeb.002311. J Exp Biol. 2007. PMID: 17449820 Review.
-
The maintenance of heritable variation through social competition.Evolution. 2008 Feb;62(2):337-47. doi: 10.1111/j.1558-5646.2007.00302.x. Epub 2007 Nov 19. Evolution. 2008. PMID: 18031305
-
Predicting phenotypic effects of gene perturbations in C. elegans using an integrated network model.Bioessays. 2008 Aug;30(8):707-10. doi: 10.1002/bies.20783. Bioessays. 2008. PMID: 18618771 Review.
Cited by
-
Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models.PLoS Comput Biol. 2015 Jul 30;11(7):e1004182. doi: 10.1371/journal.pcbi.1004182. eCollection 2015 Jul. PLoS Comput Biol. 2015. PMID: 26225866 Free PMC article. Review.
-
Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease.Int J Epidemiol. 2012 Feb;41(1):161-76. doi: 10.1093/ije/dyr233. Int J Epidemiol. 2012. PMID: 22422451 Free PMC article.
-
Drug discovery in a multidimensional world: systems, patterns, and networks.J Cardiovasc Transl Res. 2010 Oct;3(5):438-47. doi: 10.1007/s12265-010-9214-6. Epub 2010 Jul 31. J Cardiovasc Transl Res. 2010. PMID: 20677029
-
Thirteen years under arid conditions: exploring marker-trait associations in Eucalyptus cladocalyx for complex traits related to flowering, stem form and growth.Breed Sci. 2018 Jun;68(3):367-374. doi: 10.1270/jsbbs.17131. Epub 2018 Jun 29. Breed Sci. 2018. PMID: 30100804 Free PMC article.
-
Causal Transcription Regulatory Network Inference Using Enhancer Activity as a Causal Anchor.Int J Mol Sci. 2018 Nov 15;19(11):3609. doi: 10.3390/ijms19113609. Int J Mol Sci. 2018. PMID: 30445760 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources