Practical aspects of imputation-driven meta-analysis of genome-wide association studies
- PMID: 18852200
- PMCID: PMC2782358
- DOI: 10.1093/hmg/ddn288
Practical aspects of imputation-driven meta-analysis of genome-wide association studies
Abstract
Motivated by the overwhelming success of genome-wide association studies, droves of researchers are working vigorously to exchange and to combine genetic data to expediently discover genetic risk factors for common human traits. The primary tools that fuel these new efforts are imputation, allowing researchers who have collected data on a diversity of genotype platforms to share data in a uniformly exchangeable format, and meta-analysis for pooling statistical support for a genotype-phenotype association. As many groups are forming collaborations to engage in these efforts, this review collects a series of guidelines, practical detail and learned experiences from a variety of individuals who have contributed to the subject.
Similar articles
-
The impact of imputation on meta-analysis of genome-wide association studies.PLoS One. 2012;7(4):e34486. doi: 10.1371/journal.pone.0034486. Epub 2012 Apr 5. PLoS One. 2012. PMID: 22496814 Free PMC article.
-
Practical aspects of genome-wide association interaction analysis.Hum Genet. 2014 Nov;133(11):1343-58. doi: 10.1007/s00439-014-1480-y. Epub 2014 Aug 28. Hum Genet. 2014. PMID: 25164382 Review.
-
Meta-analysis of genome-wide association studies.Cold Spring Harb Protoc. 2010 Jun;2010(6):pdb.top81. doi: 10.1101/pdb.top81. Cold Spring Harb Protoc. 2010. PMID: 20516189
-
Regionally Smoothed Meta-Analysis Methods for GWAS Datasets.Genet Epidemiol. 2016 Feb;40(2):154-60. doi: 10.1002/gepi.21949. Epub 2015 Dec 28. Genet Epidemiol. 2016. PMID: 26707090 Free PMC article.
-
Genome-wide association studies--data generation, storage, interpretation, and bioinformatics.J Cardiovasc Transl Res. 2010 Jun;3(3):183-8. doi: 10.1007/s12265-010-9181-y. Epub 2010 Apr 8. J Cardiovasc Transl Res. 2010. PMID: 20560038 Review.
Cited by
-
Meta-analysis methods for genome-wide association studies and beyond.Nat Rev Genet. 2013 Jun;14(6):379-89. doi: 10.1038/nrg3472. Epub 2013 May 9. Nat Rev Genet. 2013. PMID: 23657481 Review.
-
Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk.J Neurosci. 2012 Dec 12;32(50):18087-100. doi: 10.1523/JNEUROSCI.2531-12.2012. J Neurosci. 2012. PMID: 23238724 Free PMC article.
-
Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches.PLoS Genet. 2013 Jun;9(6):e1003491. doi: 10.1371/journal.pgen.1003491. Epub 2013 Jun 13. PLoS Genet. 2013. PMID: 23785294 Free PMC article.
-
Meta-analysis identifies common variants associated with body mass index in east Asians.Nat Genet. 2012 Feb 19;44(3):307-11. doi: 10.1038/ng.1087. Nat Genet. 2012. PMID: 22344219 Free PMC article.
-
Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies.Nat Genet. 2009 Nov;41(11):1199-206. doi: 10.1038/ng.446. Epub 2009 Oct 4. Nat Genet. 2009. PMID: 19801982 Free PMC article.
References
-
- Barrett J.C., Cardon L.R. Evaluating coverage of genome-wide association studies. Nat. Genet. 2006;38:659–662. - PubMed
-
- Pe’er I., de Bakker P.I.W., Maller J., Yelensky R., Altshuler D., Daly M.J. Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat. Genet. 2006;38:663–667. - PubMed
-
- Saxena R., Voight B.F., Lyssenko V., Burtt N.P., de Bakker P.I.W., Chen H., Roix J.J., Kathiresan S., Hirschhorn J.N., Daly M.J., et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–1336. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials