Sabotage of antiviral signaling and effectors by influenza viruses
- PMID: 18713015
- DOI: 10.1515/BC.2008.146
Sabotage of antiviral signaling and effectors by influenza viruses
Abstract
Vertebrate cells activate multiple signaling modules upon virus infection to eliminate the invading pathogen and to prevent the establishment of a persistent infection. A major immediate response pathway is controlled by the RNA helicases RIG-I and MDA5, which, after recognition of viral nucleic acids, signal induction of the interferon (IFN)-alpha/beta cytokine family that upregulates numerous antiviral effector proteins. Virulent viruses, in contrast, have learned during co-evolution with their hosts to manipulate or avoid this response in order to prevail in a repulsive environment. Focusing on the influenza viruses and their IFN-antagonistic NS1 proteins, we summarize recent progress in this rapidly evolving field at the intersection of virology and immunobiology involving studies of how viral pathogens induce and sabotage cellular defenses.
Similar articles
-
[Influenza viruses and intracellular signalling pathways].Berl Munch Tierarztl Wochenschr. 2006 Mar-Apr;119(3-4):101-11. Berl Munch Tierarztl Wochenschr. 2006. PMID: 16573200 Review. German.
-
MITAgating viral infection.Immunity. 2008 Oct 17;29(4):513-5. doi: 10.1016/j.immuni.2008.09.010. Immunity. 2008. PMID: 18957261
-
Influenza viruses control the vertebrate type I interferon system: factors, mechanisms, and consequences.J Interferon Cytokine Res. 2009 Sep;29(9):549-57. doi: 10.1089/jir.2009.0066. J Interferon Cytokine Res. 2009. PMID: 19708812 Review.
-
Functional evolution of the TICAM-1 pathway for extrinsic RNA sensing.Immunol Rev. 2009 Jan;227(1):44-53. doi: 10.1111/j.1600-065X.2008.00723.x. Immunol Rev. 2009. PMID: 19120474 Review.
-
Regulation of interferon regulatory factor 3-dependent innate immunity by the HCV NS3/4A protease.Methods Mol Biol. 2009;510:211-26. doi: 10.1007/978-1-59745-394-3_16. Methods Mol Biol. 2009. PMID: 19009264
Cited by
-
Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation.PLoS One. 2009 May 21;4(5):e5658. doi: 10.1371/journal.pone.0005658. PLoS One. 2009. PMID: 19462010 Free PMC article.
-
Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells.PLoS One. 2013;8(2):e56659. doi: 10.1371/journal.pone.0056659. Epub 2013 Feb 25. PLoS One. 2013. PMID: 23451066 Free PMC article.
-
Variability of NS1 proteins among H9N2 avian influenza viruses isolated in Israel during 2000-2009.Virus Genes. 2010 Dec;41(3):396-405. doi: 10.1007/s11262-010-0522-3. Epub 2010 Aug 19. Virus Genes. 2010. PMID: 20721688
-
Virulence determinants of avian H5N1 influenza A virus in mammalian and avian hosts: role of the C-terminal ESEV motif in the viral NS1 protein.J Virol. 2010 Oct;84(20):10708-18. doi: 10.1128/JVI.00610-10. Epub 2010 Aug 4. J Virol. 2010. PMID: 20686040 Free PMC article.
-
Polydnavirus Ank proteins bind NF-κB homodimers and inhibit processing of Relish.PLoS Pathog. 2012;8(5):e1002722. doi: 10.1371/journal.ppat.1002722. Epub 2012 May 24. PLoS Pathog. 2012. PMID: 22654665 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources