Terminal sugars of Fc glycans influence antibody effector functions of IgGs
- PMID: 18606225
- DOI: 10.1016/j.coi.2008.06.007
Terminal sugars of Fc glycans influence antibody effector functions of IgGs
Abstract
IgG molecules contain glycans in the CH2 domain of the Fc fragment (N-glycosylation) which are highly heterogeneous, because of the presence of different terminal sugars. The heterogeneity of Fc glycans varies with species and expression system. Fc glycans influence the binding of IgG to Fc receptors and C1q, and are therefore important for IgG effector functions. Specifically, terminal sugars such as sialic acids, core fucose, bisecting N-acetylglucosamine, and mannose residues affect the binding of IgG to the FcgammaRIIIa receptor and thereby influence ADCC activity. By contrast, terminal galactose residues affect antibody binding to C1q and thereby modulate CDC activity. Structural studies indicate that the presence or absence of specific terminal sugars may affect hydrophilic and hydrophobic interactions between sugar residues and amino acid residues in the Fc fragment, which in turn may impact antibody effector functions.
Similar articles
-
Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types.Glycobiology. 2007 Jan;17(1):104-18. doi: 10.1093/glycob/cwl057. Epub 2006 Sep 29. Glycobiology. 2007. PMID: 17012310
-
Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies.MAbs. 2019 Jul;11(5):826-836. doi: 10.1080/19420862.2019.1608143. Epub 2019 May 8. MAbs. 2019. PMID: 30990348 Free PMC article.
-
Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro.Biotechnol Prog. 2005 Nov-Dec;21(6):1644-52. doi: 10.1021/bp050228w. Biotechnol Prog. 2005. PMID: 16321047
-
Diversity in structure and functions of antibody sialylation in the Fc.Curr Opin Biotechnol. 2014 Dec;30:147-52. doi: 10.1016/j.copbio.2014.06.014. Epub 2014 Jul 15. Curr Opin Biotechnol. 2014. PMID: 25032906 Review.
-
IgG glycosylation analysis.Proteomics. 2009 Feb;9(4):882-913. doi: 10.1002/pmic.200800715. Proteomics. 2009. PMID: 19212958 Review.
Cited by
-
Developing a medium combination to attain similar glycosylation profile to originator by DoE and cluster analysis method.Sci Rep. 2021 Mar 29;11(1):7103. doi: 10.1038/s41598-021-86447-0. Sci Rep. 2021. PMID: 33782463 Free PMC article.
-
Antibody glycosylation in autoimmune diseases.Autoimmun Rev. 2021 May;20(5):102804. doi: 10.1016/j.autrev.2021.102804. Epub 2021 Mar 14. Autoimmun Rev. 2021. PMID: 33727152 Free PMC article. Review.
-
The Structural Role of Antibody N-Glycosylation in Receptor Interactions.Structure. 2015 Sep 1;23(9):1573-1583. doi: 10.1016/j.str.2015.06.015. Epub 2015 Jul 23. Structure. 2015. PMID: 26211613 Free PMC article.
-
Biological roles of glycans.Glycobiology. 2017 Jan;27(1):3-49. doi: 10.1093/glycob/cww086. Epub 2016 Aug 24. Glycobiology. 2017. PMID: 27558841 Free PMC article. Review.
-
Clustering and curation of electropherograms: an efficient method for analyzing large cohorts of capillary electrophoresis glycomic profiles for bioprocessing operations.Beilstein J Org Chem. 2020 Aug 27;16:2087-2099. doi: 10.3762/bjoc.16.176. eCollection 2020. Beilstein J Org Chem. 2020. PMID: 32952725 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources