Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2008 Jun;138(6):1025-32.
doi: 10.1093/jn/138.6.1025.

Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation

Affiliations
Free article
Randomized Controlled Trial

Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation

Junjun Wang et al. J Nutr. 2008 Jun.
Free article

Abstract

Dietary supplementation of glutamine prevents intestinal dysfunction and atrophy in weanling piglets, but the underlying mechanism(s) are largely unknown. This study was conducted to test the hypothesis that weaning or glutamine may modulate expression of genes that are crucial for intestinal metabolism and function. In Expt. 1, we obtained small intestine from 28-d-old pigs weaned at 21 d of age and from age-matched suckling piglets. In Expt. 2, piglets were weaned at 21 d of age and then had free access to diets supplemented with 1% L-glutamine (wt:wt) or isonitrogenous L-alanine (control). At d 28, we collected small intestine for biochemical and morphological measurements and microarray analysis of gene expression using the Operon Porcine Genome Oligo set. Early weaning resulted in increased (52-346%) expression of genes related to oxidative stress and immune activation but decreased (35-77%) expression of genes related to macronutrient metabolism and cell proliferation in the gut. Dietary glutamine supplementation increased intestinal expression (120-124%) of genes that are necessary for cell growth and removal of oxidants, while reducing (34-75%) expression of genes that promote oxidative stress and immune activation. Functionally, the glutamine treatment enhanced intestinal oxidative-defense capacity (indicated by a 29% increase in glutathione concentration), prevented jejunal atrophy, and promoted small intestine growth (+12%) and body weight gain (+19%) in weaned piglets. These findings reveal coordinate alterations of gene expression in response to weaning and aid in providing molecular mechanisms for the beneficial effect of dietary glutamine supplementation to improve nutrition status in young mammals.

PubMed Disclaimer

Similar articles

Cited by

Publication types