Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;8(10):2077-88.
doi: 10.1002/pmic.200700508.

Analysis of the interaction of influenza virus polymerase complex with human cell factors

Affiliations
Free article

Analysis of the interaction of influenza virus polymerase complex with human cell factors

Núria Jorba et al. Proteomics. 2008 May.
Free article

Abstract

The influenza virus polymerase is formed by the PB1, PB2 and PA subunits and is required for virus transcription and replication in the nucleus of infected cells. Here we present the characterisation of the complexes formed intracellularly by the influenza polymerase in human cells. The virus polymerase was expressed by cotransfection of the polymerase subunits cDNAs, one of which fused to the tandem-affinity purification (TAP) tag. The intracellular complexes were purified by the TAP approach, which involves IgG-Sepharose and calmodulin-agarose chromatography, under very mild conditions. The purified complexes contained the heterotrimeric polymerase and a series of associated proteins that were not apparent in purifications of untagged polymerase used as a control. Several influenza polymerase-associated proteins were identified by MALDI-MS and their presence in purified polymerase-containing complexes were verified by Western blot. Their relevance for influenza infection was established by colocalisation with virus ribonucleoproteins in human infected cells. Most of the associated human factors were nuclear proteins involved in cellular RNA synthesis, modification and nucleo-cytoplasmic export, but some were cytosolic proteins involved in translation and transport. The interactions recognised in this proteomic approach suggest that the influenza polymerase might be involved in steps of the infection cycle other than RNA replication and transcription.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources