A multidimensional chromatography technology for in-depth phosphoproteome analysis
- PMID: 18407956
- PMCID: PMC2493382
- DOI: 10.1074/mcp.M700468-MCP200
A multidimensional chromatography technology for in-depth phosphoproteome analysis
Abstract
Protein phosphorylation is a post-translational modification widely used to regulate cellular responses. Recent studies showed that global phosphorylation analysis could be used to study signaling pathways and to identify targets of protein kinases in cells. A key objective of global phosphorylation analysis is to obtain an in-depth mapping of low abundance protein phosphorylation in cells; this necessitates the use of suitable separation techniques because of the complexity of the phosphoproteome. Here we developed a multidimensional chromatography technology, combining IMAC, hydrophilic interaction chromatography, and reverse phase LC, for phosphopeptide purification and fractionation. Its application to the yeast Saccharomyces cerevisiae after DNA damage led to the identification of 8764 unique phosphopeptides from 2278 phosphoproteins using tandem MS. Analysis of two low abundance proteins, Rad9 and Mrc1, revealed that approximately 50% of their phosphorylation was identified via this global phosphorylation analysis. Thus, this technology is suited for in-depth phosphoproteome studies.
Figures
Similar articles
-
Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.J Proteome Res. 2014 Dec 5;13(12):6176-86. doi: 10.1021/pr500893m. Epub 2014 Nov 4. J Proteome Res. 2014. PMID: 25338131
-
Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.Anal Bioanal Chem. 2019 Jun;411(15):3417-3424. doi: 10.1007/s00216-019-01823-0. Epub 2019 Apr 22. Anal Bioanal Chem. 2019. PMID: 31011783
-
Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins.Proteomics. 2011 Apr;11(8):1449-61. doi: 10.1002/pmic.201000649. Epub 2011 Feb 25. Proteomics. 2011. PMID: 21360674
-
Advances in the analysis of protein phosphorylation.J Proteome Res. 2008 May;7(5):1809-18. doi: 10.1021/pr7006544. Epub 2008 Mar 8. J Proteome Res. 2008. PMID: 18327898 Review.
-
Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: a review.Anal Chim Acta. 2011 Oct 3;703(1):19-30. doi: 10.1016/j.aca.2011.07.012. Epub 2011 Jul 19. Anal Chim Acta. 2011. PMID: 21843671 Review.
Cited by
-
The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation.Elife. 2020 Aug 24;9:e55896. doi: 10.7554/eLife.55896. Elife. 2020. PMID: 32831175 Free PMC article.
-
Restriction of histone gene transcription to S phase by phosphorylation of a chromatin boundary protein.Genes Dev. 2011 Dec 1;25(23):2489-501. doi: 10.1101/gad.173427.111. Genes Dev. 2011. PMID: 22156209 Free PMC article.
-
The Role of S. cerevisiae Sub1/PC4 in Transcription Elongation Depends on the C-Terminal Region and Is Independent of the ssDNA Binding Domain.Cells. 2022 Oct 21;11(20):3320. doi: 10.3390/cells11203320. Cells. 2022. PMID: 36291192 Free PMC article.
-
Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import.Mol Biol Cell. 2012 May;23(9):1618-27. doi: 10.1091/mbc.E11-11-0933. Epub 2012 Mar 14. Mol Biol Cell. 2012. PMID: 22419819 Free PMC article.
-
Pkh1/2-dependent phosphorylation of Vps27 regulates ESCRT-I recruitment to endosomes.Mol Biol Cell. 2012 Oct;23(20):4054-64. doi: 10.1091/mbc.E12-01-0001. Epub 2012 Aug 23. Mol Biol Cell. 2012. PMID: 22918958 Free PMC article.
References
-
- Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. ( 2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 - PubMed
-
- Li, X., Gerber, S. A., Rudner, A. D., Beausoleil, S. A., Haas, W., Villen, J., Elias, J. E., and Gygi, S. P. ( 2007) Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J. Proteome Res. 6, 1190–1197 - PubMed
-
- Chi, A., Huttenhower, C., Geer, L. Y., Coon, J. J., Syka, J. E., Bai, D. L., Shabanowitz, J., Burke, D. J., Troyanskaya, O. G., and Hunt, D. F. ( 2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 104, 2193–2198 - PMC - PubMed
-
- Bodenmiller, B., Malmstrom, J., Gerrits, B., Campbell, D., Lam, H., Schmidt, A., Rinner, O., Mueller, L. N., Shannon, P. T., Pedrioli, P. G., Panse, C., Lee, H. K., Schlapbach, R., and Aebersold, R. ( 2007) PhosphoPep—a phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Mol. Syst. Biol. 3, 139. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous