Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan-Feb;18(1):55-65.
doi: 10.1089/scd.2007.0271.

Propagation of undifferentiated human embryonic stem cells with nano-liposomal ceramide

Affiliations

Propagation of undifferentiated human embryonic stem cells with nano-liposomal ceramide

Ugur Salli et al. Stem Cells Dev. 2009 Jan-Feb.

Abstract

Human embryonic stem (hES) cells, located on the periphery of the colonies, express the neuroectodermal markers nestin and Tuj1, suggesting a prematurely differentiated subgroup of cells. Here, we report that ceramide, a bioactive sphingolipid, selectively eliminates hES cells differentially expressing nestin and Tuj1. In contrast, undifferentiated cells are resistant to the apoptotic effects of ceramide. Ceramide-resistant hES cells express higher levels of the messenger RNA for ceramide-metabolizing enzymes that convert ceramide into pro-mitogenic metabolites. Based on these findings, we conducted long-term studies to determine whether liposomal ceramide can be used to maintain undifferentiated hES cells free of feeder cells. We continuously cultured hES cells on matrigel for 4 months with liposomal ceramide in a feeder cell-free system. Human ES cells treated with liposomal ceramide maintained their pluripotent state as determined by in vivo and in vitro differentiation studies and contained no chromosomal abnormalities. In conclusion, our findings suggest that exposure to ceramide provides a viable strategy to prevent premature hES cell differentiation and to maintain pluripotent stem cell populations in the absence of feeder cells.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources