Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Apr 1;117(13):1649-57.
doi: 10.1161/CIRCULATIONAHA.107.745091. Epub 2008 Mar 17.

Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice

Affiliations
Comparative Study

Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice

Christophe Combadière et al. Circulation. .

Abstract

Background: Monocytes are critical mediators of atherogenesis. Deletion of individual chemokines or chemokine receptors leads to significant but only partial inhibition of lesion development, whereas deficiency in other signals such as CXCL16 or CCR1 accelerates atherosclerosis. Evidence that particular chemokine pathways may cooperate to promote monocyte accumulation into inflamed tissues, particularly atherosclerotic arteries, is still lacking.

Methods and results: Here, we show that chemokine-mediated signals critically determine the frequency of monocytes in the blood and bone marrow under both noninflammatory and atherosclerotic conditions. Particularly, CCL2-, CX3CR1-, and CCR5-dependent signals differentially alter CD11b(+) Ly6G(-) 7/4(hi) (also known as Ly6C(hi)) and CD11b(+) Ly6G(-) 7/4(lo) (Ly6C(lo)) monocytosis. Combined inhibition of CCL2, CX3CR1, and CCR5 in hypercholesterolemic, atherosclerosis-susceptible apolipoprotein E-deficient mice leads to abrogation of bone marrow monocytosis and to additive reduction in circulating monocytes despite persistent hypercholesterolemia. These effects are associated with a marked and additive 90% reduction in atherosclerosis. Interestingly, lesion size highly correlates with the number of circulating monocytes, particularly the CD11b(+) Ly6G(-) 7/4(lo) subset.

Conclusions: CCL2, CX3CR1, and CCR5 play independent and additive roles in atherogenesis. Signals mediated through these pathways critically determine the frequency of circulating monocyte subsets and thereby account for almost all macrophage accumulation into atherosclerotic arteries.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms