Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;9(3):R54.
doi: 10.1186/gb-2008-9-3-r54. Epub 2008 Mar 12.

Functional diversification of duplicate genes through subcellular adaptation of encoded proteins

Affiliations

Functional diversification of duplicate genes through subcellular adaptation of encoded proteins

Ana C Marques et al. Genome Biol. 2008.

Abstract

Background: Gene duplication is the primary source of new genes with novel or altered functions. It is known that duplicates may obtain these new functional roles by evolving divergent expression patterns and/or protein functions after the duplication event. Here, using yeast (Saccharomyces cerevisiae) as a model organism, we investigate a previously little considered mode for the functional diversification of duplicate genes: subcellular adaptation of encoded proteins.

Results: We show that for 24-37% of duplicate gene pairs derived from the S. cerevisiae whole-genome duplication event, the two members of the pair encode proteins that localize to distinct subcellular compartments. The propensity of yeast duplicate genes to evolve new localization patterns depends to a large extent on the biological function of their progenitor genes. Proteins involved in processes with a wider subcellular distribution (for example, catabolism) frequently evolved new protein localization patterns after duplication, whereas duplicate proteins limited to a smaller number of organelles (for example, highly expressed biosynthesis/housekeeping proteins with a slow rate of evolution) rarely relocate within the cell. Paralogous proteins evolved divergent localization patterns by partitioning of ancestral localizations ('sublocalization'), but probably more frequently by relocalization to new compartments ('neolocalization'). We show that such subcellular reprogramming may occur through selectively driven substitutions in protein targeting sequences. Notably, our data also reveal that relocated proteins functionally adapted to their new subcellular environments and evolved new functional roles through changes of their physico-chemical properties, expression levels, and interaction partners.

Conclusion: We conclude that protein subcellular adaptation represents a common mechanism for the functional diversification of duplicate genes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distribution of non-synonymous substitution rates (dN) for duplicate genes in S- and D-pairs (estimated for the time since the whole-genome duplication event - see text for details).
Figure 2
Figure 2
Illustration of the different evolutionary fates of (functional) duplicate genes. Each gene/protein is represented in different colors: red, ancestral, 'A'; green, duplicate copy A1; and blue, duplicate copy A2. Different shapes of proteins (circle, square, and triangle) indicate different functions. Three different subcellular localizations (nucleus, cytoplasm, and cytoplasmic membrane) are indicated in a schematic cell. We note that only the major possible scenarios are illustrated here.
Figure 3
Figure 3
Subcellular localizations of the (a) UBC and (b) AIR family members and subcellular localization changes inferred based on the phylogeny. The common name and yeast protein identifier (in brackets) of the protein are indicated. The schematic representation of a yeast cell depicts three possible localizations: nucleus (small circle), endoplasmatic reticulum (eclipse around nucleus), and cytoplasm (remainder of the cell). The co-localization of the protein with one of the yeast subcellular compartments is indicated by grey shading.
Figure 4
Figure 4
Subcellular relocalization and signal peptide evolution. Signal peptides (36 amino-terminal residues) and experimentally determined subcellular localizations of the (a) NTG1/NTG2 and (b) TRR1/TRR2 duplicate pairs (derived from the S. cerevisiae WGD event) are shown. K. waltii orthologous sequences are used as outgroups. Predotar [39,40] was used to predict subcellular localizations based on the protein sequences. The (predicted) subcellular localization of the K. waltii proteins was considered to represent the ancestral state. Identical residues in all peptide sequences are represented with (*) under the corresponding position in the protein alignment.
Figure 5
Figure 5
Distribution of the proportion of shared interactors for genes in S- and D-pairs.

Similar articles

Cited by

References

    1. Ohno S. Evolution by Gene Duplication. Berlin: Springer Verlag; 1970.
    1. Li WH. Molecular Evolution. Sunderland MA: Sinauer Associates; 1997.
    1. Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Segurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche K, Câmara F, Duharcourt S, Guigo R, Gogendeau D, Katinka M, Keller AM, Kissmehl R, Klotz C, Koll F, Mouël A, Lepère G, Malinsky S, Nowacki M, Nowak JK, Plattner H. et al.Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature. 2006;444:171–178. doi: 10.1038/nature05230. - DOI - PubMed
    1. Papp B, Pal C, Hurst LD. Dosage sensitivity and the evolution of gene families in yeast. Nature. 2003;424:194–197. doi: 10.1038/nature01771. - DOI - PubMed
    1. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151:1531–1545. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources