Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun;7(6):1089-98.
doi: 10.1074/mcp.M700579-MCP200. Epub 2008 Feb 18.

A high throughput proteomics screen identifies novel substrates of death-associated protein kinase

Affiliations
Free article

A high throughput proteomics screen identifies novel substrates of death-associated protein kinase

Shani Bialik et al. Mol Cell Proteomics. 2008 Jun.
Free article

Abstract

Death-associated protein kinase (DAPk) is a Ser/Thr kinase whose activity is necessary for different cell death phenotypes. Although its contribution to cell death is well established, only a handful of direct substrates have been identified; these do not fully account for the multiple cellular effects of DAPk. To identify such substrates on a large scale, we developed an in vitro, unbiased, proteomics-based assay to search for novel DAPk substrates. Biochemical fractionation and mass spectrometric analysis were used to purify and identify several potential substrates from HeLa cell lysate. Here we report the identification of two such candidate substrates, the ribosomal protein L5 and MCM3, a replication licensing factor. Although L5 proved to be a weak substrate, MCM3 was efficiently and specifically phosphorylated by DAPk on a unique site, Ser160. Significantly DAPk phosphorylated this site in vivo upon overexpression in 293T cells. Activation of endogenous DAPk by increasing intracellular Ca2+ also led to increased phosphorylation of MCM3. Importantly short hairpin RNA-mediated knockdown of endogenous DAPk blocked both basal phosphorylation and Ca2+-induced phosphorylation, indicating that DAPk is both necessary and sufficient for MCM3 Ser160 phosphorylation in vivo. Identification of MCM3 as an in vivo DAPk substrate indicates the usefulness of this approach for identification of physiologically relevant substrates that may shed light on novel functions of the kinase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources