Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Feb 14;349(6310):617-20.
doi: 10.1038/349617a0.

Cloning and expression of cDNA for a human thromboxane A2 receptor

Affiliations
Comparative Study

Cloning and expression of cDNA for a human thromboxane A2 receptor

M Hirata et al. Nature. .

Abstract

Thromboxane A2 is a very unstable arachidonate metabolite, yet a potent stimulator of platelet aggregation and a constrictor of vascular and respiratory smooth muscles. It has been implicated as a mediator in diseases such as myocardial infarction, stroke and bronchial asthma. Using a stable analogue of this compound we recently purified the human platelet thromboxane A2 receptor to apparent homogeneity. Using an oligonucleotide probe corresponding to its partial amino-acid sequence, we have obtained a complementary DNA clone encoding this receptor from human placenta and a partial clone from cultured human megakaryocytic leukaemia cells. The placenta cDNA encodes a protein of 343 amino acids with seven putative transmembrane domains. The protein expressed in COS-7 cells binds drugs with affinities identical to those of the platelet receptor, and that in Xenopus oocytes opens Ca2(+)-activated Cl- channel on agonist stimulation. Northern blot analysis and nucleotide sequences of the two clones suggest that an identical species of the thromboxane A2 receptor is present in platelets and vascular tissues. This first report on the molecular structure of an eicosanoid receptor will promote the molecular pharmacology and pathophysiology of these bioactive compounds.

PubMed Disclaimer

Similar articles

Cited by

Publication types