Computational processing and analysis of dynamic fluorescence image data
- PMID: 18155477
- DOI: 10.1016/S0091-679X(08)85022-4
Computational processing and analysis of dynamic fluorescence image data
Abstract
With the many modes of live cell fluorescence imaging made possible by the rapid advances of fluorescent protein technology, researchers begin to face a new challenge: How to transform the vast amounts of unstructured image data into quantitative information for the discovery of new cell behaviors and the rigorous testing of mechanistic hypotheses? Although manual and semiautomatic computer-assisted image analysis are still used extensively, the demand for more reproducible and complete image measurements of complex cellular dynamics increases the need for fully automatic computational image processing approaches for both mechanistic studies and screening applications in cell biology. This chapter provides an overview of the issues that arise with the use of computational algorithms in live cell imaging studies, with particular emphasis on the close coordination of sample preparation, image acquisition, and computational image analysis. It also aims to introduce the terminology and central concepts of computer vision to facilitate the communication between cell biologists and computer scientists in collaborative imaging projects.
Similar articles
-
An infrastructure for high-throughput microscopy: instrumentation, informatics, and integration.Methods Enzymol. 2006;414:484-512. doi: 10.1016/S0076-6879(06)14026-4. Methods Enzymol. 2006. PMID: 17110208 Review.
-
Multiple object tracking in molecular bioimaging by Rao-Blackwellized marginal particle filtering.Med Image Anal. 2008 Dec;12(6):764-77. doi: 10.1016/j.media.2008.03.004. Epub 2008 Mar 31. Med Image Anal. 2008. PMID: 18457985
-
Computational framework for simulating fluorescence microscope images with cell populations.IEEE Trans Med Imaging. 2007 Jul;26(7):1010-6. doi: 10.1109/TMI.2007.896925. IEEE Trans Med Imaging. 2007. PMID: 17649914
-
4D imaging to assay complex dynamics in live specimens.Nat Cell Biol. 2003 Sep;Suppl:S14-9. Nat Cell Biol. 2003. PMID: 14562846 Review.
-
Digital autofocus methods for automated microscopy.Methods Enzymol. 2006;414:620-32. doi: 10.1016/S0076-6879(06)14032-X. Methods Enzymol. 2006. PMID: 17110214 Review.
Cited by
-
Directional persistence of cell migration coincides with stability of asymmetric intracellular signaling.Biophys J. 2010 Jan 6;98(1):67-75. doi: 10.1016/j.bpj.2009.09.051. Biophys J. 2010. PMID: 20085720 Free PMC article.
-
Nanotechnology-Assisted Cell Tracking.Nanomaterials (Basel). 2022 Apr 20;12(9):1414. doi: 10.3390/nano12091414. Nanomaterials (Basel). 2022. PMID: 35564123 Free PMC article. Review.
-
Kinetochore alignment within the metaphase plate is regulated by centromere stiffness and microtubule depolymerases.J Cell Biol. 2010 Mar 8;188(5):665-79. doi: 10.1083/jcb.200909005. J Cell Biol. 2010. PMID: 20212316 Free PMC article.
-
Particle Mobility Analysis Using Deep Learning and the Moment Scaling Spectrum.Sci Rep. 2019 Nov 20;9(1):17160. doi: 10.1038/s41598-019-53663-8. Sci Rep. 2019. PMID: 31748591 Free PMC article.
-
Bioimage informatics: a new area of engineering biology.Bioinformatics. 2008 Sep 1;24(17):1827-36. doi: 10.1093/bioinformatics/btn346. Epub 2008 Jul 4. Bioinformatics. 2008. PMID: 18603566 Free PMC article. Review.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources