Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:(183):221-35.
doi: 10.1007/978-3-540-72167-3_11.

Vaccination with messenger RNA (mRNA)

Affiliations
Review

Vaccination with messenger RNA (mRNA)

Steve Pascolo. Handb Exp Pharmacol. 2008.

Abstract

Both DNA and mRNA can be used as vehicles for gene therapy. Because the immune system is naturally activated by foreign nucleic acids thanks to the presence of Toll-like Receptors (TLR) in endosomes (TLR3, 7, and 8 detect exogenous RNA, while TLR9 can detect exogenous DNA), the delivery of foreign nucleic acids usually induces an immune response directed against the encoded protein. Many preclinical and clinical studies were performed using DNA-based experimental vaccines. However, no such products are yet approved for the human population. Meanwhile, the naturally transient and cytosolically active mRNA molecules are seen as a possibly safer and more potent alternative to DNA for gene vaccination. Optimized mRNA (improved for codon usage, stability, antigen-processing characteristics of the encoded protein, etc.) were demonstrated to be potent gene vaccination vehicles when delivered naked, in liposomes, coated on particles or transfected in dendritic cells in vitro. Human clinical trials indicate that the delivery of mRNA naked or transfected in dendritic cells induces the expected antigen-specific immune response. Follow-up efficacy studies are on the way. Meanwhile, mRNA can be produced in large amounts and GMP quality, allowing the further development of mRNA-based therapies. This chapter describes the structure of mRNA, its possible optimizations for immunization purposes, the different methods of delivery used in preclinical studies, and finally the results of clinical trial where mRNA is the active pharmaceutical ingredient of new innovative vaccines.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources