Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 30;46(43):12174-89.
doi: 10.1021/bi701281e. Epub 2007 Oct 3.

Thermodynamic dissection of the Ezrin FERM/CERMAD interface

Affiliations

Thermodynamic dissection of the Ezrin FERM/CERMAD interface

Bhargavi Jayaraman et al. Biochemistry. .

Abstract

ERM (Ezrin-Radixin-Moesin) proteins are key cross-linkers of the plasma membrane and the actin cytoskeleton. They are regulated by the intramolecular association of the N-terminal FERM (band-four point one, Ezrin, Radixin, Moesin) and C-terminal CERMAD (ERM association domain) domains (N/C interaction), which masks the binding surfaces of the domains for other molecules. The N/C interface is characterized by the highly distributed binding of CERMAD through a beta-strand and four alpha-helices to a globular FERM. Though it is a target for multiple regulatory signals, little is known about the dynamics/thermodynamics governing this interface. Recent implications of Ezrin in cancer metastasis have increased the necessity to understand this regulatory switch. In this study, we report residue-specific stabilities of Ezrin CERMAD at the Ezrin N/C interface obtained using hydrogen-deuterium exchange NMR. These stabilities vary across secondary structural elements and identify F583 and L586 as key anchor residues for the most stable element, alphaD. Macroscopic N/C binding energetics, obtained using isothermal titration calorimetry (ITC) reveals a high affinity (Kd =176 nM) enthalpy-driven binding (DeltaH = -26 kcal/mol, TDeltaS = -17 kcal/mol) at 25 degrees C at pH 7 in MES and phosphate buffers. A 10-fold increase in affinity was observed for measurements in acetate buffer, suggesting that an acetate-like molecule might promote the repressed form of the complex, possibly through interaction with the F2 subdomain of FERM, which resembles the acyl-CoA binding protein. In summary, our results have illustrated the dynamic nature of this regulatory interface and provide a foundation for investigating the role of regulatory signals on the stability of this interface.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources