Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Dec;103(6):2068-76.
doi: 10.1152/japplphysiol.00670.2007. Epub 2007 Sep 27.

Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle

Affiliations
Free article
Comparative Study

Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle

Jacob M Haus et al. J Appl Physiol (1985). 2007 Dec.
Free article

Abstract

We examined intramuscular endomysial collagen, cross-linking, and advanced glycation end products, as well as the general and contractile protein concentration of 20 young (25 +/- 3 yr) and 22 old (78 +/- 6 yr, range: 70-93 yr) sedentary men and women to better understand the underlying basis of changes in skeletal muscle mass and function that occur with aging. The old individuals had an impaired ability (increased time) (P < 0.05) to climb stairs (80%), rise from a chair (56%), and walk (44%), as well as lower (P < 0.05) quadriceps muscle volume (-29%), muscle strength (-35%), muscle power (-48%), and strength (-17%) and power (-33%) normalized to muscle size. Vastus lateralis muscle biopsies revealed that intramuscular endomysial collagen (young: 9.6 +/- 1.1, old: 10.2 +/- 1.2 microg/mg muscle wet wt) and collagen cross-linking (hydroxylysylpyridinoline) (young: 395 +/- 65, old: 351 +/- 45 mmol hydroxylysylpyridinoline/mol collagen) were unchanged (P > 0.05) with aging. The advanced glycation end product, pentosidine, was increased (P < 0.05) by approximately 200% (young: 5.2 +/- 1.3, old: 15.9 +/- 4.5 mmol pentosidine/mol collagen) with aging. While myofibrillar protein concentration was lower (-5%, P < 0.05), the concentration of the main contractile proteins myosin and actin were unchanged (P > 0.05) with aging. These data suggest that the synthesis and degradation of proteins responsible for the generation (myosin and actin) and transfer (collagen and pyridinoline cross-links) of muscle force are tightly regulated in aging muscle. Glycation-related cross-linking of intramuscular connective tissue may contribute to altered muscle force transmission and muscle function with healthy aging.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources