Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;293(6):C1797-805.
doi: 10.1152/ajpcell.00554.2006. Epub 2007 Sep 19.

Activity-dependent NFATc3 nuclear accumulation in pericytes from cortical parenchymal microvessels

Affiliations
Free article

Activity-dependent NFATc3 nuclear accumulation in pericytes from cortical parenchymal microvessels

Jessica A Filosa et al. Am J Physiol Cell Physiol. 2007 Dec.
Free article

Abstract

The calcium-dependent transcription factor NFATc3, which is a member of the nuclear factor of activated T cells (NFAT) family of transcription factors, is critical for embryonic vascular development and differentiation. Despite its potential importance, nothing is known about NFATc3 regulation in the brain microcirculation. In the present study, we sought to investigate the role that glutamate, possibly through astrocytic communication, plays in the control of NFATc3 regulation in pericytes from parenchymal microvessels. Coronal cortical slices from neonatal rats were subjected to electrical field stimulation or were treated with the metabotropic glutamate receptor agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD). NFATc3, glial fibrillary acidic protein (an astrocyte-specific marker), and platelet-derived growth factor-beta-receptor (a pericyte-specific marker) were detected by immunofluorescence. Electrical field stimulation induced NFATc3 nuclear accumulation in pericytes. This response was dependent on neuronal activity and group I metabotropic glutamate receptor (mGluR) activation. In addition, t-ACPD significantly increased NFATc3 nuclear accumulation in both astrocytes and pericytes. NFATc3 nuclear accumulation in pericytes was prevented when astrocytic function was abolished with the gliotoxin L-alpha-aminoadipate or by the inhibition of calcineurin, cyclooxygenase, and nitric oxide synthase. This is the first study to report NFATc3 expression in pericytes from parenchymal microvessels and in astrocytes from native tissue. Our results suggest a model by which glutamate, via mGluR activation, may regulate gene transcription in pluripotent vascular pericytes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources