Growth rate and basic reproduction number for population models with a simple periodic factor
- PMID: 17822724
- DOI: 10.1016/j.mbs.2007.07.005
Growth rate and basic reproduction number for population models with a simple periodic factor
Abstract
For continuous-time population models with a periodic factor which is sinusoidal, both the growth rate and the basic reproduction number are shown to be the largest roots of simple equations involving continued fractions. As an example, we reconsider an SEIS model with a fixed latent period, an exponentially distributed infectious period and a sinusoidal contact rate studied in Williams and Dye [B.G. Williams, C. Dye, Infectious disease persistence when transmission varies seasonally, Math. Biosci. 145 (1997) 77]. We show that apart from a few exceptional parameter values, the epidemic threshold depends not only on the mean contact rate, but also on the amplitude of fluctuations.
Similar articles
-
The effect of using different types of periodic contact rate on the behaviour of infectious diseases: a simulation study.Comput Biol Med. 2007 Nov;37(11):1582-90. doi: 10.1016/j.compbiomed.2007.02.007. Epub 2007 Apr 23. Comput Biol Med. 2007. PMID: 17452036
-
Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks.J Theor Biol. 2008 Mar 21;251(2):238-52. doi: 10.1016/j.jtbi.2007.11.027. Epub 2007 Nov 29. J Theor Biol. 2008. PMID: 18191153
-
Periodic matrix population models: growth rate, basic reproduction number, and entropy.Bull Math Biol. 2009 Oct;71(7):1781-92. doi: 10.1007/s11538-009-9426-6. Epub 2009 May 2. Bull Math Biol. 2009. PMID: 19412636
-
The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model.Math Biosci. 2008 Nov;216(1):77-89. doi: 10.1016/j.mbs.2008.08.005. Math Biosci. 2008. PMID: 18768142
-
Multiple attractors in a discrete competition model.Theor Popul Biol. 2007 Nov;72(3):379-88. doi: 10.1016/j.tpb.2007.07.004. Epub 2007 Aug 8. Theor Popul Biol. 2007. PMID: 17869318 Review.
Cited by
-
How immune dynamics shape multi-season epidemics: a continuous-discrete model in one dimensional antigenic space.J Math Biol. 2024 Mar 27;88(4):48. doi: 10.1007/s00285-024-02076-x. J Math Biol. 2024. PMID: 38538962 Free PMC article.
-
Using input-output analysis to model the impact of pandemic mitigation and suppression measures on the workforce.Sustain Prod Consum. 2020 Jul;23:249-255. doi: 10.1016/j.spc.2020.06.001. Epub 2020 Jun 3. Sustain Prod Consum. 2020. PMID: 33521216 Free PMC article. Review.
-
The Role of Vector Trait Variation in Vector-Borne Disease Dynamics.Front Ecol Evol. 2020 Jul;8:189. doi: 10.3389/fevo.2020.00189. Epub 2020 Jul 10. Front Ecol Evol. 2020. PMID: 32775339 Free PMC article.
-
Mathematics of dengue transmission dynamics: Roles of vector vertical transmission and temperature fluctuations.Infect Dis Model. 2018 Oct 28;3:266-292. doi: 10.1016/j.idm.2018.09.003. eCollection 2018. Infect Dis Model. 2018. PMID: 30839884 Free PMC article.
-
A simple influenza model with complicated dynamics.J Math Biol. 2019 Feb;78(3):607-624. doi: 10.1007/s00285-018-1285-z. Epub 2018 Aug 28. J Math Biol. 2019. PMID: 30155777
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials