Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain
- PMID: 17547705
- DOI: 10.1111/j.1600-0854.2007.00584.x
Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain
Abstract
Endosomal sorting complex required for transport-III (ESCRT-III) is a large complex built from related ESCRT-III proteins involved in multivesicular body biogenesis. Little is known about the structure and function of this complex. Here, we compare four human ESCRT-III proteins - hVps2-1/CHMP2a, hVps24/CHMP3, hVps20/CHMP6, and hSnf7-1/CHMP4a - to each other, studying the effects of deleting predicted alpha-helical domains on their behavior in transfected cells. Surprisingly, removing approximately 40 amino acids from the C-terminus of each protein unmasks a common ability to associate with endosomal membranes and assemble into large polymeric complexes. Expressing these truncated ESCRT-III proteins in cultured cells causes ubiquitinated cargo to accumulate on enlarged endosomes and inhibits viral budding, while expressing full-length proteins does not. hVps2-1/CHMP2a lacking its C-terminal 42 amino acids further fails to bind to the AAA+ adenosine triphosphatase VPS4B/SKD1, indicating that C-terminal sequences are important for interaction of ESCRT-III proteins with VPS4. Overall, our study supports a model in which ESCRT-III proteins cycle between a default 'closed' state and an activated 'open' state under control of sequences at their C-terminus and associated factors.
Similar articles
-
Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting.Biochem J. 2005 Apr 1;387(Pt 1):17-26. doi: 10.1042/BJ20041227. Biochem J. 2005. PMID: 15511219 Free PMC article.
-
Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA+ ATPase SKD1.J Biol Chem. 2005 Apr 1;280(13):12799-809. doi: 10.1074/jbc.M413968200. Epub 2005 Jan 4. J Biol Chem. 2005. PMID: 15632132
-
Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly.Mol Biol Cell. 2008 Jun;19(6):2661-72. doi: 10.1091/mbc.e07-12-1263. Epub 2008 Apr 2. Mol Biol Cell. 2008. PMID: 18385515 Free PMC article.
-
Structure and function of ESCRT-III.Biochem Soc Trans. 2009 Feb;37(Pt 1):156-60. doi: 10.1042/BST0370156. Biochem Soc Trans. 2009. PMID: 19143622 Review.
-
Endosomal and non-endosomal functions of ESCRT proteins.Trends Cell Biol. 2006 Jun;16(6):317-26. doi: 10.1016/j.tcb.2006.04.004. Epub 2006 May 22. Trends Cell Biol. 2006. PMID: 16716591 Review.
Cited by
-
Regulation of CHMP4/ESCRT-III function in human immunodeficiency virus type 1 budding by CC2D1A.J Virol. 2012 Apr;86(7):3746-56. doi: 10.1128/JVI.06539-11. Epub 2012 Jan 18. J Virol. 2012. PMID: 22258254 Free PMC article.
-
Regulation of postsynaptic function by the dementia-related ESCRT-III subunit CHMP2B.J Neurosci. 2015 Feb 18;35(7):3155-73. doi: 10.1523/JNEUROSCI.0586-14.2015. J Neurosci. 2015. PMID: 25698751 Free PMC article.
-
The Nitrosopumilus maritimus CdvB, but not FtsZ, assembles into polymers.Archaea. 2013;2013:104147. doi: 10.1155/2013/104147. Epub 2013 Jun 2. Archaea. 2013. PMID: 23818813 Free PMC article.
-
Reversible phase separation of ESCRT protein ALIX through tyrosine phosphorylation.Sci Adv. 2023 Jul 14;9(28):eadg3913. doi: 10.1126/sciadv.adg3913. Epub 2023 Jul 14. Sci Adv. 2023. PMID: 37450591 Free PMC article.
-
Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-like CdvB.PLoS One. 2011;6(7):e21921. doi: 10.1371/journal.pone.0021921. Epub 2011 Jul 8. PLoS One. 2011. PMID: 21760923 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases