Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 1;282(22):16434-40.
doi: 10.1074/jbc.M701283200. Epub 2007 Apr 11.

The phosphorylation state of GluR1 subunits determines the susceptibility of AMPA receptors to calpain cleavage

Affiliations
Free article

The phosphorylation state of GluR1 subunits determines the susceptibility of AMPA receptors to calpain cleavage

Eunice Y Yuen et al. J Biol Chem. .
Free article

Abstract

The alpha-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor (AMPAR) is an ionotropic glutamate receptor that governs most of excitatory synaptic transmission in neurons. In vitro biochemical assay has shown that calpain, a Ca2+-activated protease, can cleave AMPAR GluR1 subunits. Our physiological study found that calpain, which was activated by prolonged stimulation of the N-methyl-D-aspartate receptor (100 microM, 10 min), caused a substantial suppression of AMPAR currents in cortical neurons. Since the phosphorylation sites of GluR1 by several protein kinases are located in close proximity to the calpain cleavage sites, we investigated the effect of phosphorylation on the susceptibility of GluR1 to calpain cleavage. Interestingly, we found that the calpain regulation of AMPAR currents was diminished by inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) but was augmented by inhibition of protein phosphatase 1/2A (PP1/2A). In agreement with this, in vitro assay showed that the calpain-induced proteolytic cleavage of GluR1 C-terminal fusion protein was strongly potentiated by adding the purified active CaMKII, and GluR1 phosphorylated at Ser831 by CaMKII is much more sensitive to calpain cleavage. Taken together, our data suggest that calpain activation suppresses AMPA receptor currents via proteolytic cleavage of GluR1 subunits, and the susceptibility of AMPARs to calpain cleavage is determined by the phosphorylation state of GluR1 subunits, which is mediated by CaMKII-PP1/2A activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources