Pathology and pathogenesis of severe acute respiratory syndrome
- PMID: 17392154
- PMCID: PMC1829448
- DOI: 10.2353/ajpath.2007.061088
Pathology and pathogenesis of severe acute respiratory syndrome
Abstract
Severe acute respiratory syndrome (SARS) is an emerging infectious viral disease characterized by severe clinical manifestations of the lower respiratory tract. The pathogenesis of SARS is highly complex, with multiple factors leading to severe injury in the lungs and dissemination of the virus to several other organs. The SARS coronavirus targets the epithelial cells of the respiratory tract, resulting in diffuse alveolar damage. Several organs/cell types may be infected in the course of the illness, including mucosal cells of the intestines, tubular epithelial cells of the kidneys, neurons of the brain, and several types of immune cells, and certain organs may suffer from indirect injury. Extensive studies have provided a basic understanding of the pathogenesis of this disease. In this review we describe the most significant pathological features of SARS, explore the etiological factors causing these pathological changes, and discuss the major pathogenetic mechanisms. The latter include dysregulation of cytokines/chemokines, deficiencies in the innate immune response, direct infection of immune cells, direct viral cytopathic effects, down-regulation of lung protective angiotensin converting enzyme 2, autoimmunity, and genetic factors. It seems that both abnormal immune responses and injury to immune cells may be key factors in the pathogenesis of this new disease.
Figures
Similar articles
-
How the SARS coronavirus causes disease: host or organism?J Pathol. 2006 Jan;208(2):142-51. doi: 10.1002/path.1897. J Pathol. 2006. PMID: 16362992 Free PMC article. Review.
-
Association of HLA class I with severe acute respiratory syndrome coronavirus infection.BMC Med Genet. 2003 Sep 12;4:9. doi: 10.1186/1471-2350-4-9. BMC Med Genet. 2003. PMID: 12969506 Free PMC article.
-
Pathogenetic mechanisms of severe acute respiratory syndrome.Virus Res. 2008 Apr;133(1):4-12. doi: 10.1016/j.virusres.2007.01.022. Epub 2007 Sep 7. Virus Res. 2008. PMID: 17825937 Free PMC article. Review.
-
[Clinical pathology and pathogenesis of severe acute respiratory syndrome].Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2003 Sep;17(3):217-21. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2003. PMID: 15340561 Chinese.
-
Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome.J Infect Dis. 2004 Aug 1;190(3):515-8. doi: 10.1086/421523. Epub 2004 Jul 7. J Infect Dis. 2004. PMID: 15243926 Free PMC article.
Cited by
-
Fungal coinfection/superinfection in COVID-19 patients in a tertiary hospital in Mexico.Biomedica. 2024 Aug 29;44(3):328-339. doi: 10.7705/biomedica.7251. Biomedica. 2024. PMID: 39241240 Free PMC article.
-
Preventive Vitamin D Supplementation and Risk for COVID-19 Infection: A Systematic Review and Meta-Analysis.Nutrients. 2024 Feb 28;16(5):679. doi: 10.3390/nu16050679. Nutrients. 2024. PMID: 38474807 Free PMC article. Review.
-
HIV and COVID-19: two pandemics with significant (but different) central nervous system complications.Free Neuropathol. 2024 Mar 5;5:5-5. doi: 10.17879/freeneuropathology-2024-5343. eCollection 2024 Jan. Free Neuropathol. 2024. PMID: 38469363 Free PMC article.
-
Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19.Virulence. 2024 Dec;15(1):2316438. doi: 10.1080/21505594.2024.2316438. Epub 2024 Feb 16. Virulence. 2024. PMID: 38362881 Free PMC article. Review.
-
Serum proteomics reveals a tolerant immune phenotype across multiple pathogen taxa in wild vampire bats.Front Immunol. 2023 Dec 12;14:1281732. doi: 10.3389/fimmu.2023.1281732. eCollection 2023. Front Immunol. 2023. PMID: 38193073 Free PMC article.
References
-
- Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967–1976. - PubMed
-
- Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL. The genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–1404. - PubMed
-
- Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JS, Poon LL. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:276–278. - PubMed
-
- Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. Bats are natural reservoirs of SARS-like coronavirus. Science. 2005;310:676–679. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous