Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;10(4):453-61.
doi: 10.1038/nn1866. Epub 2007 Mar 11.

Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex

Affiliations

Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex

Michael I Daw et al. Nat Neurosci. 2007 Apr.

Abstract

Feedforward inhibitory GABAergic transmission is critical for mature cortical circuit function; in the neonate, however, GABA is depolarizing and believed to have a different role. Here we show that the GABAA receptor-mediated conductance is depolarizing in excitatory (stellate) cells in neonatal (postnatal day [P]3-5) layer IV barrel cortex, but GABAergic transmission at this age is not engaged by thalamocortical input in the feedforward circuit and has no detectable circuit function. However, recruitment occurs at P6-7 as a result of coordinated increases in thalamic drive to fast-spiking interneurons, fast-spiking interneuron-stellate cell connectivity and hyperpolarization of the GABAA receptor-mediated response. Thus, GABAergic circuits are not engaged by thalamocortical input in the neonate, but are poised for a remarkably coordinated development of feedforward inhibition at the end of the first postnatal week, which has profound effects on circuit function at this critical time in development.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources