Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;81(5):1287-96.
doi: 10.1189/jlb.0306209. Epub 2007 Jan 30.

Molecular mechanisms involved in interleukin-4-induced human neutrophils: expression and regulation of suppressor of cytokine signaling

Affiliations

Molecular mechanisms involved in interleukin-4-induced human neutrophils: expression and regulation of suppressor of cytokine signaling

Claude Ratthé et al. J Leukoc Biol. 2007 May.

Abstract

Interleukin-4 (IL-4) is a CD132-dependent cytokine known to activate the Jak-STAT pathway in different cells and cell lines. Although IL-4 has been demonstrated previously to be an agonist in human neutrophils, its capacity to activate different cell signaling pathways in these cells has never been investigated. Two types of IL-4 receptor (IL-4R) exist: the Type I (CD132/IL-4Ralpha heterodimer) and the Type II (IL-4Ralpha/IL-13Ralpha1 heterodimer). In a previous study, we demonstrated that neutrophils express the Type I receptor. Herein, using flow cytometry, we demonstrated that neutrophils, unlike U-937 cells, do not express IL-13Ralpha1 and IL-13Ralpha2 and confirmed the expression of CD132 and IL-4Ralpha on their surface. We also demonstrated that IL-4 induced phosphorylation of Syk, p38, Erk-1/2, JNK, Jak-1, Jak-2, STAT6, and STAT1 and that treatment of cells with the inhibitors piceatannol, SB203580, PD98059, or AG490 reversed the ability of IL-4 to delay neutrophil apoptosis. Using RT-PCR, we demonstrated for the first time that neutrophils express mRNA for all suppressor of cytokine signaling (SOCS) members, namely SOCS1-7 and cytokine-inducible Src homology 2 protein. It is interesting that IL-4 increased expression of SOCS3 at the mRNA and protein levels. The effect of IL-4 on SOCS3 protein expression was increased markedly when the proteasome inhibitor MG132 was added to the cultures, but this was inhibited by cycloheximide, suggesting that SOCS3 is de novo-synthesized in response to IL-4. We conclude that neutrophils express only the Type I IL-4R on their surface and that IL-4 signals via different cell signaling pathways, including the Jak/STAT/SOCS pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms