Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;13(1):83-90.
doi: 10.1002/ibd.20009.

Lactobacillus fermentum attenuates the proinflammatory effect of Yersinia enterocolitica on human epithelial cells

Affiliations

Lactobacillus fermentum attenuates the proinflammatory effect of Yersinia enterocolitica on human epithelial cells

Julia-Stefanie Frick et al. Inflamm Bowel Dis. 2007 Jan.

Abstract

Background: Lactobacilli represent a major component of the human microbiota. In this study we investigated whether and how Lactobacillus fermentum inhibits the proinflammatory responses of human epithelial cells on Yersinia enterocolitica infection.

Methods: Human epithelial cells were exposed to Y. enterocolitica pYV(-) or L. fermentum or to both strains, combinations of heat-killed L. fermentum or supernatant of L. fermentum cultures and Y. enterocolitica. The modulation of Y. enterocolitica induced IL-8 levels in the culture supernatants was determined and activation of Rac, p38, and NF-kappaB was investigated.

Results: Exposure of human epithelial cells to L. fermentum does not induce NF-kappaB activation and subsequent IL-8 secretion in HeLa cells, whereas Y. enterocolitica induces NF-kappaB activation and high levels of IL-8. Viable L. fermentum, supernatant of L. fermentum cultures, but not heat-killed L. fermentum, inhibited IL-8 secretion of HeLa cells triggered by Y. enterocolitica. Lactobacillus fermentum-exposed HeLa cells showed decreased Rac, p38, and NF-kappaB activation after Y. enterocolitica infection. Treatment of L. fermentum supernatants with phospholipase C abolished the inhibitory effect, indicating that a secreted phospholipid mediates the antiinflammatory properties of L. fermentum. Adhesion to or invasion of Y. enterocolitica into epithelial cells was not altered by coincubation with L. fermentum.

Conclusion: Our results lead to the conclusion that L. fermentum inhibits the Y. enterocolitica-induced IL-8 production by a possibly secreted phospholipid of <10 kDa molecular weight. These data suggest that L. fermentum may have probiotic properties modulating intestinal inflammatory responses and might offer new therapeutic strategies in the treatment of intestinal inflammatory diseases.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources