Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb 23;282(8):5910-8.
doi: 10.1074/jbc.M609025200. Epub 2006 Dec 22.

Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in caenorhabditis elegans

Affiliations
Free article

Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in caenorhabditis elegans

Kenji Kimura et al. J Biol Chem. .
Free article

Abstract

Mitochondrial heat shock protein 70 (mthsp70) functions as a mitochondrial import motor and is essential in mitochondrial biogenesis and energy generation in eukaryotic cells. HSP-6 (hsp70F) is a nematode orthologue of mthsp70. Knockdown of HSP-6 by RNA interference in young adult nematodes caused a reduction in the levels of ATP-2, HSP-60 and CLK-1, leading to abnormal mitochondrial morphology and lower ATP levels. As a result, RNA interference-treated worms had lower motility, defects in oogenesis, earlier accumulation of autofluorescent material, and a shorter life span. These are the major phenotypes observed during the aging of worms, suggesting that the reduction of HSP-6 causes early aging or progeria-like phenotypes. The amount of HSP-6 became dramatically reduced at the expected mean life span in not only wild-type but also in long and short life span mutant worms (wild-type, daf-2, and daf-16). Mitochondrial HSP-60 and ATP-2 were also reduced following the reduction of HSP-6 during aging. These results suggest that the reduction of HSP-6 causes defects in mitochondrial function at the final stage of aging, leading to mortality.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources