Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;328(1):19-29.
doi: 10.1007/s00441-006-0348-4. Epub 2006 Dec 19.

NKIM-6, a new immortalized human brain capillary endothelial cell line with conserved endothelial characteristics

Affiliations

NKIM-6, a new immortalized human brain capillary endothelial cell line with conserved endothelial characteristics

Nahal Ketabi-Kiyanvash et al. Cell Tissue Res. 2007 Apr.

Abstract

Primary human brain capillary endothelial cells (hBCECs) are available only in small quantities and have a short life span in vitro; this restricts their use as in vitro model for the blood-brain barrier (BBB). To overcome these limitations, we have established an immortalized hBCEC line (NKIM-6) by transfection with pLXSN16E6E7, which encodes the human papillomavirus type 16 E6 and E7 genes. The cell line exhibits an extended life span in vitro and retains its characteristic endothelial morphology, endothelial markers, and physiology. Likewise, as demonstrated by immunohistochemistry and reverse transcription/polymerase chain reaction (RT-PCR), NKIM-6 cells express BBB markers, and the lack of glial, neuronal, and epithelial markers confirms their endothelial origin. Moreover, with quantitative RT-PCR, we have been able to demonstrate that several ATP-binding cassette-transporters are expressed in NKIM-6 cells with a conserved expression order compared with primary hBCECs. Our results suggest that this cell line might be suitable as in vitro model for several aspects of the BBB.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources