Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 15;66(22):10677-82.
doi: 10.1158/0008-5472.CAN-06-3171.

Human arrest defective 1 acetylates and activates beta-catenin, promoting lung cancer cell proliferation

Affiliations

Human arrest defective 1 acetylates and activates beta-catenin, promoting lung cancer cell proliferation

Ji-Hong Lim et al. Cancer Res. .

Abstract

Arrest defective 1 (ARD1), an acetyltransferase, is essential for the yeast life cycle. Although its human homologue (hARD1) has been identified, its biological functions in human cells remain unclear. In the present study, we examined the biological function of hARD1. In H1299 and A549 lung cancer cells, hARD1-silencing RNA inhibited cell proliferation and induced G(1) arrest. Cyclin D1 was also found to be down-regulated in these growth-arrested cells, and the ectopic expression of cyclin D1 rescued cell growth. hARD1 knockdown repressed the promoter activity of the cyclin D1 gene, which inhibited the transcription of cyclin D1. Moreover, hARD1 knockdown reduced the binding of beta-catenin/TCF4 transcription factor to cyclin D1 promoter and repressed its transcriptional activity. Inversely, hARD1 expression increased the transcriptional activity of beta-catenin. Both endogenous and ectopically expressed hARD1 was coimmunoprecipitated with beta-catenin. hARD1 knockdown did not affect beta-catenin expression or degradation but noticeably reduced acetylated beta-catenin. The beta-catenin binding and acetylation by hARD1 were observed in vitro. Therefore, it is suggested that hARD1 participates in proliferation of lung cancer cells via the activation of beta-catenin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources