RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival
- PMID: 17018283
- DOI: 10.1016/j.cell.2006.08.034
RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival
Abstract
The monomeric RalGTPases, RalA and RalB are recognized as components of a regulatory framework supporting tumorigenic transformation. Specifically, RalB is required to suppress apoptotic checkpoint activation, the mechanistic basis of which is unknown. Reported effector proteins of RalB include the Sec5 component of the exocyst, an octameric protein complex implicated in tethering of vesicles to membranes. Surprisingly, we find that the RalB/Sec5 effector complex directly recruits and activates the atypical IkappaB kinase family member TBK1. In cancer cells, constitutive engagement of this pathway, via chronic RalB activation, restricts initiation of apoptotic programs typically engaged in the context of oncogenic stress. Although dispensable for survival in a nontumorigenic context, this pathway helps mount an innate immune response to virus exposure. These observations define the mechanistic contribution of RalGTPases to cancer cell survival and reveal the RalB/Sec5 effector complex as a component of TBK1-dependent innate immune signaling.
Comment in
-
RalB signaling: a bridge between inflammation and cancer.Cell. 2006 Oct 6;127(1):42-4. doi: 10.1016/j.cell.2006.09.019. Cell. 2006. PMID: 17018274
Similar articles
-
Characterization of RalB-Sec5-TBK1 function in human oncogenesis.Methods Enzymol. 2008;438:321-9. doi: 10.1016/S0076-6879(07)38022-1. Methods Enzymol. 2008. PMID: 18413258
-
The deubiquitylase USP33 discriminates between RALB functions in autophagy and innate immune response.Nat Cell Biol. 2013 Oct;15(10):1220-30. doi: 10.1038/ncb2847. Epub 2013 Sep 22. Nat Cell Biol. 2013. PMID: 24056301
-
RalB signaling: a bridge between inflammation and cancer.Cell. 2006 Oct 6;127(1):42-4. doi: 10.1016/j.cell.2006.09.019. Cell. 2006. PMID: 17018274
-
Ral GTPases: corrupting the exocyst in cancer cells.Trends Cell Biol. 2005 Jun;15(6):327-32. doi: 10.1016/j.tcb.2005.04.002. Trends Cell Biol. 2005. PMID: 15953551 Review.
-
Ral GTPases in tumorigenesis: emerging from the shadows.Exp Cell Res. 2013 Sep 10;319(15):2337-42. doi: 10.1016/j.yexcr.2013.06.020. Epub 2013 Jul 2. Exp Cell Res. 2013. PMID: 23830877 Free PMC article. Review.
Cited by
-
A signalling cascade for Ral.Small GTPases. 2022 Jan;13(1):128-135. doi: 10.1080/21541248.2021.1917953. Epub 2021 May 6. Small GTPases. 2022. PMID: 33956571 Free PMC article. Review.
-
Mechanism of endogenous regulation of the type I interferon response by suppressor of IκB kinase epsilon (SIKE), a novel substrate of TANK-binding kinase 1 (TBK1).J Biol Chem. 2013 Jun 21;288(25):18612-23. doi: 10.1074/jbc.M112.440859. Epub 2013 May 6. J Biol Chem. 2013. PMID: 23649622 Free PMC article.
-
Deciphering the Role of Innate Immune NF-ĸB Pathway in Pancreatic Cancer.Cancers (Basel). 2020 Sep 19;12(9):2675. doi: 10.3390/cancers12092675. Cancers (Basel). 2020. PMID: 32961746 Free PMC article. Review.
-
TBK1 Is a Synthetic Lethal Target in Cancer with VHL Loss.Cancer Discov. 2020 Mar;10(3):460-475. doi: 10.1158/2159-8290.CD-19-0837. Epub 2019 Dec 6. Cancer Discov. 2020. PMID: 31810986 Free PMC article.
-
Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia.Nat Commun. 2018 Oct 10;9(1):4182. doi: 10.1038/s41467-018-06541-2. Nat Commun. 2018. PMID: 30305637 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous