Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;102(1):306-13.
doi: 10.1152/japplphysiol.00932.2006. Epub 2006 Sep 28.

MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy

Affiliations
Free article

MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy

John J McCarthy et al. J Appl Physiol (1985). 2007 Jan.
Free article

Abstract

MicroRNAs (miRNAs) are a class of highly conserved, noncoding RNAs involved in posttranscriptional gene regulation. A small number of muscle-specific miRNAs have been identified and shown to have a role in myoblast proliferation and differentiation as well as embryonic muscle growth. The primary objective of the present study was to determine the expression level of the muscle-specific miRNAs in the soleus and plantaris muscles and whether their expression in the plantaris was altered in response to functional overload. Of the miRNAs examined, only miRNA-206 was differentially expressed between soleus and plantaris muscles, as reflected by the sevenfold higher expression in the soleus for both the primary miRNA (pri-miRNA) and mature miRNA (miR). Following 7 days of functional overload, transcript levels for both pri-miRNA-1-2 and pri-miRNA-133a-2 increased by approximately 2-fold, whereas pri-miRNA-206 levels were elevated 18.3-fold. In contrast, expression of miR-1 and miR-133a were downregulated by approximately 50% following overload. The discrepancy between pri-miRNA and miR expression following overload was not explained by a change in the expression of components of the miRNA biogenesis pathway, since Drosha and Exportin-5 transcript levels were significantly increased by 50% in response to functional overload, whereas Dicer expression remained unchanged. These results are the first to report alterations in expression of muscle-specific miRNAs in adult skeletal muscle and suggest miRNAs may have a role in the adaptation to functional overload.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources