Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;28(3):550-8.
doi: 10.1016/j.biomaterials.2006.08.051. Epub 2006 Sep 20.

Physicochemically modified silicon as a substrate for protein microarrays

Affiliations

Physicochemically modified silicon as a substrate for protein microarrays

A Jasper Nijdam et al. Biomaterials. 2007 Jan.

Abstract

Reverse phase protein microarrays (RPMA) enable high throughput screening of posttranslational modifications of important signaling proteins within diseased cells. One limitation of protein-based molecular profiling is the lack of a PCR-like intrinsic amplification system for proteins. Enhancement of protein microarray sensitivities is an important goal, especially because many molecular targets within patient tissues are of low abundance. The ideal array substrate will have a high protein-binding affinity and low intrinsic signal. To date, nitrocellulose-coated glass has provided an effective substrate for protein binding in the microarray format when using chromogenic detection systems. As fluorescent systems, such as quantum dots, are explored as potential reporter agents, the intrinsic fluorescent properties of nitrocellulose-coated glass slides limit the ability to image microarrays for extended periods of time where increases in net sensitivity can be attained. Silicon, with low intrinsic autofluorescence, is being explored as a potential microarray surface. Native silicon has low binding potential. Through titrated reactive ion etching (RIE), varying surface areas have been created on silicon in order to enhance protein binding. Further, via chemical modification, reactive groups have been added to the surfaces for comparison of relative protein binding. Using this combinatorial method of surface roughening and surface coating, 3-aminopropyltriethoxysilane (APTES) and mercaptopropyltrimethoxysilane (MPTMS) treatments were shown to transform native silicon into a protein-binding substrate comparable to nitrocellulose.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources