The dynamic energy landscape of dihydrofolate reductase catalysis
- PMID: 16973882
- DOI: 10.1126/science.1130258
The dynamic energy landscape of dihydrofolate reductase catalysis
Abstract
We used nuclear magnetic resonance relaxation dispersion to characterize higher energy conformational substates of Escherichia coli dihydrofolate reductase. Each intermediate in the catalytic cycle samples low-lying excited states whose conformations resemble the ground-state structures of preceding and following intermediates. Substrate and cofactor exchange occurs through these excited substates. The maximum hydride transfer and steady-state turnover rates are governed by the dynamics of transitions between ground and excited states of the intermediates. Thus, the modulation of the energy landscape by the bound ligands funnels the enzyme through its reaction cycle along a preferred kinetic path.
Comment in
-
Structural biology. Dynamic visions of enzymatic reactions.Science. 2006 Sep 15;313(5793):1586-7. doi: 10.1126/science.1132851. Science. 2006. PMID: 16973868 No abstract available.
Similar articles
-
Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1373-8. doi: 10.1073/pnas.0914163107. Epub 2010 Jan 8. Proc Natl Acad Sci U S A. 2010. PMID: 20080605 Free PMC article.
-
Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5032-7. doi: 10.1073/pnas.0500699102. Epub 2005 Mar 28. Proc Natl Acad Sci U S A. 2005. PMID: 15795383 Free PMC article.
-
Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle.Biochemistry. 2004 Dec 28;43(51):16046-55. doi: 10.1021/bi048119y. Biochemistry. 2004. PMID: 15609999
-
Searching sequence space: two different approaches to dihydrofolate reductase catalysis.Chembiochem. 2005 Apr;6(4):590-600. doi: 10.1002/cbic.200400237. Chembiochem. 2005. PMID: 15812782 Review.
-
Conformational Sub-states and Populations in Enzyme Catalysis.Methods Enzymol. 2016;578:273-97. doi: 10.1016/bs.mie.2016.05.023. Epub 2016 Jul 9. Methods Enzymol. 2016. PMID: 27497171 Free PMC article. Review.
Cited by
-
Redox-linked conformational control of proton-coupled electron transfer: Y122 in the ribonucleotide reductase β2 subunit.J Phys Chem B. 2013 Jul 18;117(28):8457-68. doi: 10.1021/jp404757r. Epub 2013 Jul 3. J Phys Chem B. 2013. PMID: 23822111 Free PMC article.
-
Two β-Lactamase Variants with Reduced Clavulanic Acid Inhibition Display Different Millisecond Dynamics.Antimicrob Agents Chemother. 2021 Jul 16;65(8):e0262820. doi: 10.1128/AAC.02628-20. Epub 2021 Jul 16. Antimicrob Agents Chemother. 2021. PMID: 34031049 Free PMC article.
-
Connecting protein conformational dynamics with catalytic function as illustrated in dihydrofolate reductase.Biochemistry. 2013 Mar 26;52(12):2036-49. doi: 10.1021/bi301559q. Epub 2013 Jan 16. Biochemistry. 2013. PMID: 23297871 Free PMC article.
-
Effect of circular permutations on transient partial unfolding in proteins.Protein Sci. 2016 Aug;25(8):1483-91. doi: 10.1002/pro.2945. Epub 2016 May 24. Protein Sci. 2016. PMID: 27164316 Free PMC article.
-
Linking protein motion to enzyme catalysis.Molecules. 2015 Jan 13;20(1):1192-209. doi: 10.3390/molecules20011192. Molecules. 2015. PMID: 25591120 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases