Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 5;45(35):10448-60.
doi: 10.1021/bi060981d.

Abundance of intrinsic disorder in protein associated with cardiovascular disease

Affiliations

Abundance of intrinsic disorder in protein associated with cardiovascular disease

Yugong Cheng et al. Biochemistry. .

Abstract

Evidence that many protein regions and even entire proteins lacking stable tertiary and/or secondary structure in solution (i.e., intrinsically disordered proteins) might be involved in protein-protein interactions, regulation, recognition, and signal transduction is rapidly accumulating. These signaling proteins play a crucial role in the development of several pathological conditions, including cancer. To test a hypothesis that intrinsic disorder is also abundant in cardiovascular disease (CVD), a data set of 487 CVD-related proteins was extracted from SWISS-PROT. CVD-related proteins are depleted in major order-promoting residues (Trp, Phe, Tyr, Ile, and Val) and enriched in some disorder-promoting residues (Arg, Gln, Ser, Pro, and Glu). The application of a neural network predictor of natural disordered regions (PONDR VL-XT) together with cumulative distribution function (CDF) analysis, charge-hydropathy plot (CH plot) analysis, and alpha-helical molecular recognition feature (alpha-MoRF) indicator revealed that CVD-related proteins are enriched in intrinsic disorder. In fact, the percentage of proteins with 30 or more consecutive residues predicted by PONDR VL-XT to be disordered was 57 +/- 4% for CVD-associated proteins. This value is close that described earlier for signaling proteins (66 +/- 6%) and is significantly larger than the content of intrinsic disorder in eukaryotic proteins from SWISS-PROT (47 +/- 4%) and in nonhomologous protein segments with a well-defined three-dimensional structure (13 +/- 4%). Furthermore, CDF and CH-plot analyses revealed that 120 and 36 CVD-related proteins, respectively, are wholly disordered. This high level of intrinsic disorder could be important for the function of CVD-related proteins and for the control and regulation of processes associated with cardiovascular disease. In agreement with this hypothesis, 198 alpha-MoRFs were predicted in 101 proteins from the CVD data set. A comparison of disorder predictions with the experimental structural and functional data for a subset of the CVD-associated proteins indicated good agreement between predictions and observations. Thus, our data suggest that intrinsically disordered proteins might play key roles in cardiovascular disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources