Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 30;128(34):11094-105.
doi: 10.1021/ja0608040.

Quadruplex-based molecular beacons as tunable DNA probes

Affiliations

Quadruplex-based molecular beacons as tunable DNA probes

A Bourdoncle et al. J Am Chem Soc. .

Abstract

Molecular beacons (MBs) are fluorescent nucleic acid probes with a hairpin-shaped structure in which the 5' and 3' ends are self-complementary. Due to a change in their emissive properties upon recognition with complementary sequences, MBs allow the diagnosis of single-stranded DNA or RNA with high mismatch discrimination, in vitro and in vivo. Whereas the stems of MB hairpins usually rely on the formation of a Watson-Crick duplex, we demonstrate in this report that the preceding structure can be replaced by a G-quadruplex motif (G4). Intramolecular quadruplexes may still be formed with a central loop composed of 12 to 21 bases, therefore extending the sequence repertoire of quadruplex formation. G4-MB can efficiently be used for oligonucleotide discrimination: in the presence of a complementary sequence, the central loop hybridizes and forms a duplex that causes opening of the quadruplex stem. The corresponding G4-MB unfolding can be detected by a change in its fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using G4-MB instead of traditional MB. In particular, the intrinsic feature of the quadruplex motif facilitates the design of functional molecular beacons by independently varying the concentration of monovalent or divalent cations in the medium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources