Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 15;79(4):815-26.
doi: 10.1002/jbm.a.30809.

Biomimetic artificial ECMs stimulate bone regeneration

Affiliations

Biomimetic artificial ECMs stimulate bone regeneration

Eugene H Chung et al. J Biomed Mater Res A. .

Abstract

We demonstrate that a biomimetic polymer network is capable of affecting bone regeneration in vivo. Starting with a foundation consisting of an environmentally responsive poly(N-isopropylacrylamide-co-acrylic acid) hydrogel, we incorporated matrix metalloproteinase-13 (MMP-13) degradable crosslinkers and peptides containing integrin-binding domains (i.e., Arg-Gly-Asp) to create a biomimetic matrix designed to encourage osteoblast migration and proliferation. We independently tuned matrix stiffness and peptide concentration to generate a response surface model of osteoblast proliferation on different types of matrices. Osteoblast proliferation was significantly influenced by matrix stiffness (i.e., its complex modulus) and peptide concentration. When implanted in a rat femoral ablation model, these matrices induced bone regeneration only when protease degradable crosslinks were used to create the network. For the matrices with MMP-13 degradable crosslinkers, the bone formed had a trabecular-like structure and was distributed throughout the marrow space. Based on the correlated effects of matrix stiffness and ligand concentration, the response surface model will facilitate improvements in the regenerative capacity of these artificial extracellular matrices.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources