Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jul 15;20(14):1848-67.
doi: 10.1101/gad.1422906.

Dosage compensation in mammals: fine-tuning the expression of the X chromosome

Affiliations
Free article
Review

Dosage compensation in mammals: fine-tuning the expression of the X chromosome

Edith Heard et al. Genes Dev. .
Free article

Abstract

Mammalian females have two X chromosomes and males have only one. This has led to the evolution of special mechanisms of dosage compensation. The inactivation of one X chromosome in females equalizes gene expression between the sexes. This process of X-chromosome inactivation (XCI) is a remarkable example of long-range, monoallelic gene silencing and facultative heterochromatin formation, and the questions surrounding it have fascinated biologists for decades. How does the inactivation of more than a thousand genes on one X chromosome take place while the other X chromosome, present in the same nucleus, remains genetically active? What are the underlying mechanisms that trigger the initial differential treatment of the two X chromosomes? How is this differential treatment maintained once it has been established, and how are some genes able to escape the process? Does the mechanism of X inactivation vary between species and even between lineages? In this review, X inactivation is considered in evolutionary terms, and we discuss recent insights into the epigenetic changes and developmental timing of this process. We also review the discovery and possible implications of a second form of dosage compensation in mammals that deals with the unique, potentially haploinsufficient, status of the X chromosome with respect to autosomal gene expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources