Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 23:5:23.
doi: 10.1186/1475-2859-5-23.

Live bacterial vaccines--a review and identification of potential hazards

Affiliations

Live bacterial vaccines--a review and identification of potential hazards

Ann Detmer et al. Microb Cell Fact. .

Abstract

The use of live bacteria to induce an immune response to itself or to a carried vaccine component is an attractive vaccine strategy. Advantages of live bacterial vaccines include their mimicry of a natural infection, intrinsic adjuvant properties and their possibility to be administered orally. Derivatives of pathogenic and non-pathogenic food related bacteria are currently being evaluated as live vaccines. However, pathogenic bacteria demands for attenuation to weaken its virulence. The use of bacteria as vaccine delivery vehicles implies construction of recombinant strains that contain the gene cassette encoding the antigen. With the increased knowledge of mucosal immunity and the availability of genetic tools for heterologous gene expression the concept of live vaccine vehicles gains renewed interest. However, administration of live bacterial vaccines poses some risks. In addition, vaccination using recombinant bacteria results in the release of live recombinant organisms into nature. This places these vaccines in the debate on application of genetically modified organisms. In this review we give an overview of live bacterial vaccines on the market and describe the development of new live vaccines with a focus on attenuated bacteria and food-related lactic acid bacteria. Furthermore, we outline the safety concerns and identify the hazards associated with live bacterial vaccines and try to give some suggestions of what to consider during their development.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Dietrich G, Griot-Wenk M, Metcalfe IC, Lang AB, Viret JF. Experience with registered mucosal vaccines. Vaccine. 2003;21:678–683. doi: 10.1016/S0264-410X(02)00579-0. - DOI - PubMed
    1. Lindberg AA. The history of live bacterial vaccines. Dev Biol Stand. 1995;84:211–219. - PubMed
    1. Taylor DN, Tacket CO, Losonsky G, Castro O, Gutierrez J, Meza R, Nataro JP, Kaper JB, Wasserman SS, Edelman R, Levine MM, Cryz SJ. Evaluation of a bivalent (CVD 103-HgR/CVD 111) live oral cholera vaccine in adult volunteers from the United States and Peru. Infect Immun. 1997;65:3852–3856. - PMC - PubMed
    1. Taylor DN, Sanchez JL, Castro JM, Lebron C, Parrado CM, Johnson DE, Tacket CO, Losonsky GA, Wasserman SS, Levine MM, Cryz SJ. Expanded safety and immunogenicity of a bivalent, oral, attenuated cholera vaccine, CVD 103-HgR plus CVD 111, in United States military personnel stationed in Panama. Infect Immun. 1999;67:2030–2034. - PMC - PubMed
    1. Levine MM, DuPont HL, Hornick RB, Snyder MJ, Woodward W, Gilman RH, Libonati JP. Attenuated, streptomycin-dependent Salmonella typhi oral vaccine: potential deleterious effects of lyophilization. J Infect Dis. 1976;133:424–429. - PubMed

LinkOut - more resources