Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;33(7):637-41.
doi: 10.1111/j.1440-1681.2006.04391.x.

Renal preglomerular arterial-venous O2 shunting is a structural anti-oxidant defence mechanism of the renal cortex

Affiliations

Renal preglomerular arterial-venous O2 shunting is a structural anti-oxidant defence mechanism of the renal cortex

Paul M O'Connor et al. Clin Exp Pharmacol Physiol. 2006 Jul.

Abstract

1. High blood flow to the kidney facilitates a high glomerular filtration rate, but total renal O2 delivery greatly exceeds renal metabolic requirements. However, tissue Po2 in much of the renal cortex is lower than may be expected, being similar to that of other organs in which perfusion is closely matched to metabolic demand. 2. The lower than expected renal cortical Po2 is now attributed largely to diffusional shunting of as much as 50% of inflowing O2 from blood within preglomerular arterial vessels to post-glomerular venous vessels. However, the functional significance of this O2 shunting remains unclear. Indeed, this mechanism may appear maladaptive, given the kidney's susceptibility to hypoxic insults. 3. We hypothesize that renal preglomerular arterial-venous O2 shunting acts to protect the kidney from the potentially damaging consequences of tissue hyperoxia. The diffusion of O2 from arteries to veins within the kidney acts to reduce the O2 content of the blood before it is distributed to the renal microcirculation. Because high tissue Po2 may increase the production of reactive oxygen species, we suggest that renal arterial-venous O2 shunting may provide a physiological benefit to the organism by limiting O2 delivery to renal tissue, thereby reducing the risk of cellular oxidation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources