Computational models for neurogenic gene expression in the Drosophila embryo
- PMID: 16750631
- DOI: 10.1016/j.cub.2006.05.044
Computational models for neurogenic gene expression in the Drosophila embryo
Abstract
The early Drosophila embryo is emerging as a premiere model system for the computational analysis of gene regulation in development because most of the genes, and many of the associated regulatory DNAs, that control segmentation and gastrulation are known. The comprehensive elucidation of Drosophila gene networks provides an unprecedented opportunity to apply quantitative models to metazoan enhancers that govern complex patterns of gene expression during development. Models based on the fractional occupancy of defined DNA binding sites have been used to describe the regulation of the lac operon in E. coli and the lysis/lysogeny switch of phage lambda. Here, we apply similar models to enhancers regulated by the Dorsal gradient in the ventral neurogenic ectoderm (vNE) of the early Drosophila embryo. Quantitative models based on the fractional occupancy of Dorsal, Twist, and Snail binding sites raise the possibility that cooperative interactions among these regulatory proteins mediate subtle differences in the vNE expression patterns. Variations in cooperativity may be attributed to differences in the detailed linkage of Dorsal, Twist, and Snail binding sites in vNE enhancers. We propose that binding site occupancy is the key rate-limiting step for establishing localized patterns of gene expression in the early Drosophila embryo.
Similar articles
-
Quantitative analysis of binding motifs mediating diverse spatial readouts of the Dorsal gradient in the Drosophila embryo.Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):4966-71. doi: 10.1073/pnas.0409414102. Epub 2005 Mar 28. Proc Natl Acad Sci U S A. 2005. PMID: 15795372 Free PMC article.
-
The Snail repressor positions Notch signaling in the Drosophila embryo.Development. 2002 Apr;129(7):1785-93. doi: 10.1242/dev.129.7.1785. Development. 2002. PMID: 11923213
-
Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo.Genes Dev. 2007 Feb 15;21(4):385-90. doi: 10.1101/gad.1509607. Genes Dev. 2007. PMID: 17322397 Free PMC article.
-
Formation, interpretation, and regulation of the Drosophila Dorsal/NF-κB gradient.Curr Top Dev Biol. 2020;137:143-191. doi: 10.1016/bs.ctdb.2019.11.007. Epub 2019 Dec 26. Curr Top Dev Biol. 2020. PMID: 32143742 Review.
-
Combinatorial patterning mechanisms in the Drosophila embryo.Brief Funct Genomic Proteomic. 2009 Jul;8(4):243-9. doi: 10.1093/bfgp/elp026. Epub 2009 Aug 3. Brief Funct Genomic Proteomic. 2009. PMID: 19651703 Review.
Cited by
-
Analysis of combinatorial cis-regulation in synthetic and genomic promoters.Nature. 2009 Jan 8;457(7226):215-8. doi: 10.1038/nature07521. Epub 2008 Nov 23. Nature. 2009. PMID: 19029883 Free PMC article.
-
Base-resolution models of transcription-factor binding reveal soft motif syntax.Nat Genet. 2021 Mar;53(3):354-366. doi: 10.1038/s41588-021-00782-6. Epub 2021 Feb 18. Nat Genet. 2021. PMID: 33603233 Free PMC article.
-
Incorporating chromatin accessibility data into sequence-to-expression modeling.Biophys J. 2015 Mar 10;108(5):1257-67. doi: 10.1016/j.bpj.2014.12.037. Biophys J. 2015. PMID: 25762337 Free PMC article.
-
What does it take to evolve an enhancer? A simulation-based study of factors influencing the emergence of combinatorial regulation.Genome Biol Evol. 2015 May 7;7(6):1415-31. doi: 10.1093/gbe/evv080. Genome Biol Evol. 2015. PMID: 25956793 Free PMC article.
-
Dpp-induced Egfr signaling triggers postembryonic wing development in Drosophila.Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5058-63. doi: 10.1073/pnas.1217538110. Epub 2013 Mar 11. Proc Natl Acad Sci U S A. 2013. PMID: 23479629 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials